Hadamard and Fejer-Hadamard inequalities for extended generalized fractional integrals involving special functions

被引:38
|
作者
Kang, Shin Min [1 ,2 ,3 ]
Farid, Ghulam [4 ]
Nazeer, Waqas [5 ]
Tariq, Bushra [6 ]
机构
[1] Gyeongsang Natl Univ, Dept Math, Jinju, South Korea
[2] Gyeongsang Natl Univ, Res Inst Nat Sci, Jinju, South Korea
[3] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
[4] COMSATS Univ, Dept Math, Attock Campus, Islamabad, Pakistan
[5] Univ Educ, Div Sci & Technol, Lahore, Pakistan
[6] GGPS Kamalpur Alam, Attock, Pakistan
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2018年
关键词
Convex function; m-convex functions; Hadamard inequality; Fejer-Hadamard inequality; Fractional integrals; Extended generalized Mittag-Leffler function;
D O I
10.1186/s13660-018-1701-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the Hadamard and the Fejer-Hadamard inequalities for the extended generalized fractional integral operator involving the extended generalized Mittag-Leffler function. The extended generalized Mittag-Leffler function includes many known special functions. We have several such inequalities corresponding to special cases of the extended generalized Mittag-Leffler function. Also there we note the known results that can be obtained.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] New estimates for Hermite-Hadamard-Fejer-type inequalities containing Raina fractional integrals
    Tariq, Maria
    Nosheen, Ammara
    Khan, Khuram Ali
    Abualnaja, Khadijah M.
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [32] On Hadamard Type Fractional Inequalities for Riemann-Liouville Integrals via a Generalized Convexity
    Yan, Tao
    Farid, Ghulam
    Yasmeen, Hafsa
    Jung, Chahn Yong
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [33] Hermite-Hadamard Type Inequalities for h-Convex Functions Via Generalized Fractional Integrals
    Ali, M. Aamir
    Budak, H.
    Abbas, M.
    Sarikaya, M. Z.
    Kashuri, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2020, 14 (04) : 187 - 234
  • [34] SIMPSON-HADAMARD'S INEQUALITIES FOR HADAMARD K-FRACTIONAL INTEGRALS
    Husien, Asraa Abdul Jaleel
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (05): : 1051 - 1061
  • [35] HERMITE-HADAMARD'S INEQUALITIES FOR η-CONVEX FUNCTIONS VIA CONFORMABLE FRACTIONAL INTEGRALS AND RELATED INEQUALITIES
    Khan, M. Adil
    Khurshid, Y.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (02): : 157 - 169
  • [36] New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals
    Almutairi, Ohud
    Kilicman, Adem
    SYMMETRY-BASEL, 2020, 12 (04):
  • [37] Hermite-Hadamard-Mercer Type Inequalities for Fractional Integrals
    Ogulmus, Hatice
    Sarikaya, Mehmet Zeki
    FILOMAT, 2021, 35 (07) : 2425 - 2436
  • [38] ON HADAMARD TYPE INEQUALITIES FOR m-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
    Farid, G.
    Rehman, A. Ur
    Tariq, B.
    Waheed, A.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2016, 7 (04): : 150 - 167
  • [39] Hermite–Hadamard type inequalities for conformable fractional integrals
    M. Adil Khan
    T. Ali
    S. S. Dragomir
    M. Z. Sarikaya
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 1033 - 1048
  • [40] SOME NEW GENERALIZATIONS OF HADAMARD-TYPE MIDPOINT INEQUALITIES INVOLVING FRACTIONAL INTEGRALS
    Bayraktar, B.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (03): : 66 - 82