Sustainable water generation: grand challenges in continuous atmospheric water harvesting

被引:0
|
作者
Poredos, Primoz [1 ,2 ]
Shan, He [1 ,2 ]
Wang, Chenxi [1 ,2 ]
Deng, Fangfang [1 ,2 ]
Wang, Ruzhu [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
[2] MOE China, Engn Res Ctr Solar Power & Refrigerat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; ADSORPTION; SORPTION;
D O I
10.1039/d2ee01234k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sorption- and radiative sky cooling-based atmospheric water harvesting (AWH) technologies hold promise to provide decentralized fresh water in highly remote and arid regions. The recent emergence of advanced energy materials such as hygroscopic metal-organic frameworks, hydrogels and nanoporous composite sorbents, in addition to radiative sky cooling materials provided the necessary means for AWH. However, truly continuously operational devices are yet to be developed and field-tested. The research focus is now facing a paradigm shift, as future AWH systems are challenged to provide water generation on a kilogram scale, finally meeting a recommended daily water intake per person. This criterion can be adeptly met with continuously operated devices in comparison to discontinuous ones, providing much needed compactness alongside energy and mass efficiency. Here we critically discuss the drawbacks of current energy materials as well as system designs that hinder the use of continuous AWH. Based on identified challenges we outline viable scientific and technological paths. In addition, a possible synergistic effect of sorbents and radiative sky cooling materials on material and system levels to achieve 24 hour continuous fresh water generation is discussed. The provided development paths can spur voluminous avenues into sustainable continuous AWH exploration, making the ultimate goal "to provide fresh water for all" a step closer.
引用
收藏
页码:3223 / 3235
页数:14
相关论文
共 50 条
  • [21] Covalent Organic Frameworks for Atmospheric Water Harvesting
    Nguyen, Ha L.
    ADVANCED MATERIALS, 2023, 35 (17)
  • [22] Adsorption-based atmospheric water harvesting
    Ejeian, M.
    Wang, R. Z.
    JOULE, 2021, 5 (07) : 1678 - 1703
  • [23] Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting
    Lei, Chuxin
    Guo, Youhong
    Guan, Weixin
    Lu, Hengyi
    Shi, Wen
    Yu, Guihua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (13)
  • [24] Hydrogels and hydrogel derivatives for atmospheric water harvesting
    Lyu, Tong
    Han, Yixuan
    Chen, Zhaojun
    Fan, Xiangchao
    Tian, Ye
    MATERIALS TODAY SUSTAINABILITY, 2024, 25
  • [25] Mass transfer in atmospheric water harvesting systems
    Lassitter, Thomas
    Hanikel, Nikita
    Coyle, Dennis J.
    Hossain, Mohammad I.
    Lipinski, Bryce
    O'Brien, Michael
    Hall, David B.
    Hastings, Jon
    Borja, Juan
    O'Neil, Travis
    Neumann, S. Ephraim
    Moore, David R.
    Yaghi, Omar M.
    Glover, T. Grant
    CHEMICAL ENGINEERING SCIENCE, 2024, 285
  • [26] Sustainable cooling with water generation
    Poredos, Primoz
    Wang, Ruzhu
    SCIENCE, 2023, 380 (6644) : 458 - 459
  • [27] Sorbent-based atmospheric water harvesting: engineering challenges from the process to molecular scale
    Borne, Isaiah
    Cooper, Andrew I.
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (07) : 4838 - 4850
  • [28] A Polyzwitterionic@MOF Hydrogel with Exceptionally High Water Vapor Uptake for Efficient Atmospheric Water Harvesting
    Yan, Jian
    Li, Wenjia
    Yu, Yingyin
    Huang, Guangyu
    Peng, Junjie
    Lv, Daofei
    Chen, Xin
    Wang, Xun
    Liu, Zewei
    MOLECULES, 2024, 29 (08):
  • [29] Hygroscopic Porous Polymer for Sorption-Based Atmospheric Water Harvesting
    Deng, Fangfang
    Chen, Zhihui
    Wang, Chenxi
    Xiang, Chengjie
    Poredos, Primoz
    Wang, Ruzhu
    ADVANCED SCIENCE, 2022, 9 (33)
  • [30] Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting
    Kim, Hyunho
    Rao, Sameer R.
    LaPotin, Mina
    Lee, Seockheon
    Wang, Evelyn N.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 161