Time distributed-order diffusion-wave equation. I. Volterra-type equation

被引:79
作者
Atanackovic, Teodor M. [2 ]
Pilipovic, Stevan [3 ]
Zorica, Dusan [1 ]
机构
[1] Univ Novi Sad, Fac Civil Engn, Subotica 24000, Serbia
[2] Univ Novi Sad, Dept Mech, Fac Tech Sci, Novi Sad 21000, Serbia
[3] Univ Novi Sad, Dept Math, Fac Nat Sci & Math, Novi Sad 21000, Serbia
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2009年 / 465卷 / 2106期
关键词
fractional derivative; distributed-order fractional derivative; diffusion-wave equation; Volterra equation; FRACTIONAL DIFFUSION; MULTIDIMENSIONAL SOLUTIONS;
D O I
10.1098/rspa.2008.0445
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A single-order time-fractional diffusion-wave equation is generalized by introducing a time distributed-order fractional derivative and forcing term, while a Laplacian is replaced by a general linear multi-dimensional spatial differential operator. The obtained equation is ( in the case of the Laplacian) called a time distributed-order diffusion-wave equation. We analyse a Cauchy problem for such an equation by means of the theory of an abstract Volterra equation. The weight distribution, occurring in the distributed-order fractional derivative, is specified as the sum of the Dirac distributions and the existence and uniqueness of solutions to the Cauchy problem, and the corresponding Volterra-type equation were proven for a general linear spatial differential operator, as well as in the special case when the operator is Laplacian.
引用
收藏
页码:1869 / 1891
页数:23
相关论文
共 17 条
[1]  
[Anonymous], CISM COURSES LECT
[2]  
Arendt W., 2001, Vector-Valued Laplace Transforms and Cauchy Problems
[3]   A diffusion wave equation with two fractional derivatives of different order [J].
Atanackovic, T. M. ;
Pilipovic, S. ;
Zorica, D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (20) :5319-5333
[4]   Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan ;
Zorica, Dusan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106) :1893-1917
[5]   Distributional framework for solving fractional differential equations [J].
Atanackovic, Teodor M. ;
Oparnica, Ljubica ;
Pilipovic, Stevan .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2009, 20 (3-4) :215-222
[6]   On a fractional distributed-order oscillator [J].
Atanackovic, TM ;
Budincevic, M ;
Pilipovic, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (30) :6703-6713
[7]   Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
PHYSICAL REVIEW E, 2002, 66 (04) :7-046129
[8]   Wright functions as scale-invariant solutions of the diffusion-wave equation [J].
Gorenflo, R ;
Luchko, Y ;
Mainardi, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :175-191
[9]   Anomalous diffusion without scale invariance [J].
Hanyga, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (21) :5551-5563
[10]   Multidimensional solutions of time-fractional diffusion-wave equations [J].
Hanyga, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2020) :933-957