Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution

被引:238
作者
Akhtar, Naveed [1 ]
Shafait, Faisal [1 ]
Mian, Ajmal [1 ]
机构
[1] Univ Western Australia, Sch Comp Sci & Software Engn, Crawley, WA 6009, Australia
来源
COMPUTER VISION - ECCV 2014, PT VII | 2014年 / 8695卷
关键词
Hyperspectral; super-resolution; spatio-spectral; sparse representation; ALGORITHMS; APPROXIMATION;
D O I
10.1007/978-3-319-10584-0_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing hyperspectral imaging systems produce low spatial resolution images due to hardware constraints. We propose a sparse representation based approach for hyperspectral image super-resolution. The proposed approach first extracts distinct reflectance spectra of the scene from the available hyperspectral image. Then, the signal sparsity, non-negativity and the spatial structure in the scene are exploited to explain a high-spatial but low-spectral resolution image of the same scene in terms of the extracted spectra. This is done by learning a sparse code with an algorithm G-SOMP+. Finally, the learned sparse code is used with the extracted scene spectra to estimate the super-resolution hyperspectral image. Comparison of the proposed approach with the state-of-the-art methods on both ground-based and remotely-sensed public hyperspectral image databases shows that the presented method achieves the lowest error rate on all test images in the three datasets.
引用
收藏
页码:63 / 78
页数:16
相关论文
共 36 条
  • [1] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [2] Improving component substitution pansharpening through multivariate regression of MS plus Pan data
    Aiazzi, Bruno
    Baronti, Stefano
    Selva, Massimo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3230 - 3239
  • [3] SUnGP: A greedy sparse approximation algorithm for hyperspectral unmixing
    Akhtar, Naveed
    Shafait, Faisal
    Mian, Ajmal
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3726 - 3731
  • [4] Akhtar N, 2014, IEEE WINT CONF APPL, P953, DOI 10.1109/WACV.2014.6836001
  • [5] Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest
    Alparone, Luciano
    Wald, Lucien
    Chanussot, Jocelyn
    Thomas, Claire
    Gamba, Paolo
    Bruce, Lori Mann
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3012 - 3021
  • [6] [Anonymous], BMVC
  • [7] Hyperspectral Remote Sensing Data Analysis and Future Challenges
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Camps-Valls, Gustavo
    Scheunders, Paul
    Nasrabadi, Nasser M.
    Chanussot, Jocelyn
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) : 6 - 36
  • [8] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [9] On the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations
    Bruckstein, Alfred M.
    Elad, Michael
    Zibulevsky, Michael
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (11) : 4813 - 4820
  • [10] CARPER WJ, 1990, PHOTOGRAMM ENG REM S, V56, P459