Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution

被引:250
作者
Akhtar, Naveed [1 ]
Shafait, Faisal [1 ]
Mian, Ajmal [1 ]
机构
[1] Univ Western Australia, Sch Comp Sci & Software Engn, Crawley, WA 6009, Australia
来源
COMPUTER VISION - ECCV 2014, PT VII | 2014年 / 8695卷
关键词
Hyperspectral; super-resolution; spatio-spectral; sparse representation; ALGORITHMS; APPROXIMATION;
D O I
10.1007/978-3-319-10584-0_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing hyperspectral imaging systems produce low spatial resolution images due to hardware constraints. We propose a sparse representation based approach for hyperspectral image super-resolution. The proposed approach first extracts distinct reflectance spectra of the scene from the available hyperspectral image. Then, the signal sparsity, non-negativity and the spatial structure in the scene are exploited to explain a high-spatial but low-spectral resolution image of the same scene in terms of the extracted spectra. This is done by learning a sparse code with an algorithm G-SOMP+. Finally, the learned sparse code is used with the extracted scene spectra to estimate the super-resolution hyperspectral image. Comparison of the proposed approach with the state-of-the-art methods on both ground-based and remotely-sensed public hyperspectral image databases shows that the presented method achieves the lowest error rate on all test images in the three datasets.
引用
收藏
页码:63 / 78
页数:16
相关论文
共 36 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Improving component substitution pansharpening through multivariate regression of MS plus Pan data [J].
Aiazzi, Bruno ;
Baronti, Stefano ;
Selva, Massimo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3230-3239
[3]   SUnGP: A greedy sparse approximation algorithm for hyperspectral unmixing [J].
Akhtar, Naveed ;
Shafait, Faisal ;
Mian, Ajmal .
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, :3726-3731
[4]  
Akhtar N, 2014, IEEE WINT CONF APPL, P953, DOI 10.1109/WACV.2014.6836001
[5]   Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest [J].
Alparone, Luciano ;
Wald, Lucien ;
Chanussot, Jocelyn ;
Thomas, Claire ;
Gamba, Paolo ;
Bruce, Lori Mann .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3012-3021
[6]  
[Anonymous], BMVC
[7]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[8]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[9]   On the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations [J].
Bruckstein, Alfred M. ;
Elad, Michael ;
Zibulevsky, Michael .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (11) :4813-4820
[10]  
CARPER WJ, 1990, PHOTOGRAMM ENG REM S, V56, P459