Predicting patient response with models trained on cell lines and patient-derived xenografts by nonlinear transfer learning

被引:26
作者
Mourragui, Soufiane M. C. [1 ,2 ]
Loog, Marco [2 ,3 ]
Vis, Daniel J. [1 ]
Moore, Kat [1 ]
Manjon, Anna G. [4 ]
van de Wiel, Mark A. [5 ,6 ]
Reinders, Marcel J. T. [2 ,7 ]
Wessels, Lodewyk F. A. [1 ,2 ]
机构
[1] Netherlands Canc Inst, Oncode Inst, Div Mol Carcinogenesis, NL-1066 CX Amsterdam, Netherlands
[2] Delft Univ Technol, Dept Elect Engn Math & Comp Sci, NL-2628 XE Delft, Netherlands
[3] Univ Copenhagen, Dept Comp Sci, DK-2100 Copenhagen, Denmark
[4] Netherlands Canc Inst, Oncode Inst, Div Cell Biol, NL-1066 CX Amsterdam, Netherlands
[5] Amsterdam Univ Med Ctr, Epidemiol & Biostat, NL-1105 AZ Amsterdam, Netherlands
[6] Univ Cambridge, Biostat Unit, Med Res Council, Cambridge CB2 0SR, England
[7] Leiden Univ, Leiden Computat Biol Ctr, Med Ctr, NL-2333 ZC Leiden, Netherlands
关键词
model systems; translational medicine; clinical drug response; cancer; transfer learning; GENE-EXPRESSION; DRUG RESPONSE; CANCER; KERNEL; RESISTANCE; PACLITAXEL; INHIBITION; PROTEIN-1; RELEVANCE; CDC42;
D O I
10.1073/pnas.2106682118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Preclinical models have been the workhorse of cancer research, producing massive amounts of drug response data. Unfortunately, translating response biomarkers derived from these datasets to human tumors has proven to be particularly challenging. To address this challenge, we developed TRANSACT, a computational framework that builds a consensus space to capture biological processes common to preclinical models and human tumors and exploits this space to construct drug response predictors that robustly transfer from preclinical models to human tumors. TRANSACT performs favorably compared to four competing approaches, including two deep learning approaches, on a set of 23 drug prediction challenges on The Cancer Genome Atlas and 226 metastatic tumors from the Hartwig Medical Foundation. We demonstrate that response predictions deliver a robust performance for a number of therapies of high clinical importance: platinum-based chemotherapies, gemcitabine, and paclitaxel. In contrast to other approaches, we demonstrate the interpretability of the TRANSACT predictors by correctly identifying known biomarkers of targeted therapies, and we propose potential mechanisms that mediate the resistance to two chemotherapeutic agents.
引用
收藏
页数:12
相关论文
共 99 条
[51]   A review on machine learning principles for multi-view biological data integration [J].
Li, Yifeng ;
Wu, Fang-Xiang ;
Ngom, Alioune .
BRIEFINGS IN BIOINFORMATICS, 2018, 19 (02) :325-340
[52]   featureCounts: an efficient general purpose program for assigning sequence reads to genomic features [J].
Liao, Yang ;
Smyth, Gordon K. ;
Shi, Wei .
BIOINFORMATICS, 2014, 30 (07) :923-930
[53]   Deep Variational Metric Learning [J].
Lin, Xudong ;
Duan, Yueqi ;
Dong, Qiyuan ;
Lu, Jiwen ;
Zhou, Jie .
COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 :714-729
[54]   EGFR-TKIs resistance via EGFR-independent signaling pathways [J].
Liu, Qian ;
Yu, Shengnan ;
Zhao, Weiheng ;
Qin, Shuang ;
Chu, Qian ;
Wu, Kongming .
MOLECULAR CANCER, 2018, 17
[55]   Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients [J].
Ma, Jianzhu ;
Fong, Samson H. ;
Luo, Yunan ;
Bakkenist, Christopher J. ;
Shen, John Paul ;
Mourragui, Soufiane ;
Wessels, Lodewyk F. A. ;
Hafner, Marc ;
Sharan, Roded ;
Peng, Jian ;
Ideker, Trey .
NATURE CANCER, 2021, 2 (02) :233-244
[56]  
Mak IWY, 2014, AM J TRANSL RES, V6, P114
[57]   Targeting Rac and Cdc42 GTPases in Cancer [J].
Maldonado, Maria del Mar ;
Dharmawardhane, Suranganie .
CANCER RESEARCH, 2018, 78 (12) :3101-3111
[58]   PIMKL: Pathway-Induced Multiple Kernel Learning [J].
Manica, Matteo ;
Cadow, Joris ;
Mathis, Roland ;
Martinez, Maria Rodriguez .
NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2019, 5 (1)
[59]  
McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, 10.48550/arXiv.1802.03426, DOI 10.48550/ARXIV.1802.03426]
[60]   PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors [J].
Mourragui, Soufiane ;
Loog, Marco ;
van de Wiel, Mark A. ;
Reinders, Marcel J. T. ;
Wessels, Lodewyk F. A. .
BIOINFORMATICS, 2019, 35 (14) :I510-I519