Multichannel color image denoising based on multiple dictionaries learning

被引:0
作者
Zhang, Ying [1 ,2 ]
Zhang, Feng [1 ,2 ]
Tao, Ran [1 ,2 ]
机构
[1] Beijing Inst Technol, Dept Elect Engn, Beijing, Peoples R China
[2] Beijing Key Lab Fract Signals & Syst, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
color image denoising; sparse representation; dictionary learning; patch prior; SPARSE REPRESENTATION; CONSTRAINT; NOISE;
D O I
10.1117/1.JEI.28.2.023002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dictionary learning for sparse representation has attracted much attention among researchers in image denoising. However, most dictionary learning-based methods use a single dictionary which has limitation in sparse representation ability. To improve the performance of this methodology, we propose a multichannel color image denoising algorithm based on multiple dictionary learning. Compared with a fixed dictionary, multiple dictionaries have more powerful representation ability. The algorithm first uses a Gaussian mixture model to model the generic patch prior of an external natural color image dataset. Then, the multiple orthogonal dictionaries are initialized with the generic prior by applying singular value decomposition to the covariance matrix of each Gaussian component. The sparse coding coefficients and the multiple dictionaries are alternately updated for better fitting the desired image. Considering the difference of the noise levels in RGB channels, we use a weight matrix to adjust the contributions of different channels for the denoised result. The desired image is estimated based on maximum a posteriori framework. The extensive experiments have demonstrated that our proposed method outperforms some state-of-the-art denoising algorithms in most cases. (C) 2019 SPIE and IS&T
引用
收藏
页数:10
相关论文
共 33 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], EUR C COMP VIS
[3]   External Patch Prior Guided Internal Clustering for Image Denoising [J].
Chen, Fei ;
Zhang, Lei ;
Yu, Huimin .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :603-611
[4]   An Efficient Statistical Method for Image Noise Level Estimation [J].
Chen, Guangyong ;
Zhu, Fengyuan ;
Heng, Pheng Ann .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :477-485
[5]   Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration [J].
Chen, Yunjin ;
Pock, Thomas .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) :1256-1272
[6]   Nonlocality-Reinforced Convolutional Neural Networks for Image Denoising [J].
Cruz, Cristovao ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (08) :1216-1220
[7]   Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, :313-316
[8]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[9]   Nonlocally Centralized Sparse Representation for Image Restoration [J].
Dong, Weisheng ;
Zhang, Lei ;
Shi, Guangming ;
Li, Xin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (04) :1618-1628
[10]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745