Modelling of polymer electrolyte membrane fuel cell stacks based on a hydraulic network approach

被引:44
作者
Baschuk, JJ [1 ]
Li, XG [1 ]
机构
[1] Univ Waterloo, Dept Mech Engn, Waterloo, ON N2L 3G1, Canada
关键词
PEM fuel cell; stack; performance optimization; hydraulic network analysis; mathematical modelling;
D O I
10.1002/er.993
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Polymer electrolyte membrane (PEM) fuel cells convert the chemical energy of hydrogen and oxygen directly into electrical energy. Waste heat and water are the reaction by-products, making PEM fuel cells a promising zero-emission power source for transportation and stationary co-generation applications. In this study. a mathematical model of a PEM fuel cell stack is formulated. The distributions of the pressure and mass flow rate for the fuel and oxidant streams in the stack are determined with a hydraulic network analysis. Using these distributions as operating conditions, the performance of each cell in the stack is determined with a mathematical, single cell model that has been developed previously. The stack model has been applied to PEM fuel cell stacks with two common stack configurations: the U and Z stack design. The former is designed such that the reactant streams enter and exit the stack on the same end, while the latter has reactant streams entering and exiting on opposite ends. The stack analysed consists of 50 individual active cells with fully humidified H-2 or reformate as fuel and humidified O-2 or air as the oxidant. It is found that the average voltage of the cells in the stack is lower than the voltage of the cell operating individually, and this difference in the cell performance is significantly larger for reformate/air reactants when compared to the H-2/O-2 reactants. It is observed that the performance degradation for cells operating within a stack results from the unequal distribution of reactant mass flow among the cells in the stack. It is shown that strategies for performance improvement rely on obtaining a uniform reactant distribution within the stack, and include increasing stack manifold size, decreasing the number of gas flow channels per bipolar plate, and judicially varying the resistance to mass flow in the gas flow channels from cell to cell. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:697 / 724
页数:28
相关论文
共 22 条
[1]  
AMPHLETT J, 1995, J ELECTROCHEMICAL SO, V142, P99
[2]   Technical cost analysis for PEM fuel cells [J].
Bar-On, I ;
Kirchain, R ;
Roth, R .
JOURNAL OF POWER SOURCES, 2002, 109 (01) :71-75
[3]  
BARBIR F, 1999, P ASME ADV EN SYST D, P305
[4]  
BASCHUK J, IN PRESS INT J GLOBA
[5]   Analysis of PEM fuel cell stacks using an empirical current-voltage equation [J].
Chu, D ;
Jiang, R ;
Walker, C .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (03) :365-370
[6]   Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part II. Engineering, technology development and application aspects [J].
Costamagna, P ;
Srinivasan, S .
JOURNAL OF POWER SOURCES, 2001, 102 (1-2) :253-269
[7]   Modelling and analysis of a solid polymer fuel cell system for transportation applications [J].
Cownden, R ;
Nahon, M ;
Rosen, MA .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (06) :615-623
[8]   Incorporation of voltage degradation into a generalised steady state electrochemical model for a PEM fuel cell [J].
Fowler, MW ;
Mann, RF ;
Amphlett, JC ;
Peppley, BA ;
Roberge, PR .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :274-283
[9]   Dynamic behavior of a PEM fuel cell stack for stationary applications [J].
Hamelin, J ;
Agbossou, K ;
Laperrière, A ;
Laurencelle, F ;
Bose, TK .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (06) :625-629
[10]  
Idelchik I., 1994, Handbook of Hydraulic Resistance, V3rd