Analysis on an HDG Method for the p-Laplacian Equations

被引:6
作者
Qiu, Weifeng [1 ]
Shi, Ke [2 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
[2] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
关键词
Discontinuous Galerkin; p-Laplacian; Hybridization; 65N30; 65L12; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT APPROXIMATION; ERROR ANALYSIS; ELLIPTIC-EQUATIONS; STOKES EQUATIONS; A-PRIORI; DIFFUSION;
D O I
10.1007/s10915-019-00967-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Cockburn and Shen (SIAM J Sci Comput 38(1):A545-A566, 2016) the authors propose the first hybridizable discontinuous Galerkin method (HDG) for the p-Laplacian equation. Several iterative algorithms are developed and tested. The main purpose of this paper is to provide rigorous error estimates for the proposed HDG method. We first develop the error estimates based on general polyhedral/polygonal triangulations, under standard regularity assumption of the solution, the convergence analysis is presented for 1<p<2 and p>2. Nevertheless, when p approaches to the limits (p -> 1+ or p ->infinity), the convergence rate shows degeneration for both cases. Finally, this degeneration can be recovered if we use simplicial triangulation of the domain with sufficient large stabilization parameter for the method.
引用
收藏
页码:1019 / 1032
页数:14
相关论文
共 50 条
  • [41] Eigenvalue problem for finite difference equations with p-Laplacian
    Yang Y.
    Meng F.
    Yang, Y. (yitaoyangqf@163.com), 2012, Springer Verlag (40) : 319 - 340
  • [42] POSITIVE SOLUTIONS FOR PARAMETRIC EQUIDIFFUSIVE p-LAPLACIAN EQUATIONS
    Leszek GASINSKI
    Nikolaos S.PAPAGEORGIOU
    ActaMathematicaScientia, 2014, 34 (03) : 610 - 618
  • [43] Mountain pass solutions to equations of p-Laplacian type
    De Nápoli, P
    Mariani, MC
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (07) : 1205 - 1219
  • [44] Existence of positive solutions of p-Laplacian difference equations
    Li, Yongkun
    Lu, Linghong
    APPLIED MATHEMATICS LETTERS, 2006, 19 (10) : 1019 - 1023
  • [45] A Finite Difference Method for the Variational p-Laplacian
    del Teso, Felix
    Lindgren, Erik
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [46] A mixed finite element method for a class of evolution differential equations with p-Laplacian and memory
    Almeida, Rui M. P.
    Duque, Jose C. M.
    Mario, Belchior C. X.
    APPLIED NUMERICAL MATHEMATICS, 2022, 181 : 534 - 551
  • [47] ANALYSIS OF AN HDG METHOD FOR LINEARIZED INCOMPRESSIBLE RESISTIVE MHD EQUATIONS
    Lee, Jeonghun J.
    Shannon, Stephen J.
    Tan Bui-Thanh
    Shadid, John N.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) : 1697 - 1722
  • [48] A Superconvergent HDG Method for the Maxwell Equations
    Chen, Huangxin
    Qiu, Weifeng
    Shi, Ke
    Solano, Manuel
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (03) : 1010 - 1029
  • [49] A Superconvergent HDG Method for the Maxwell Equations
    Huangxin Chen
    Weifeng Qiu
    Ke Shi
    Manuel Solano
    Journal of Scientific Computing, 2017, 70 : 1010 - 1029
  • [50] Remarks on regularity for p-Laplacian type equations in non-divergence form
    Attouchi, Amal
    Ruosteenoja, Eero
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (05) : 1922 - 1961