Analysis on an HDG Method for the p-Laplacian Equations

被引:6
|
作者
Qiu, Weifeng [1 ]
Shi, Ke [2 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
[2] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
关键词
Discontinuous Galerkin; p-Laplacian; Hybridization; 65N30; 65L12; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT APPROXIMATION; ERROR ANALYSIS; ELLIPTIC-EQUATIONS; STOKES EQUATIONS; A-PRIORI; DIFFUSION;
D O I
10.1007/s10915-019-00967-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Cockburn and Shen (SIAM J Sci Comput 38(1):A545-A566, 2016) the authors propose the first hybridizable discontinuous Galerkin method (HDG) for the p-Laplacian equation. Several iterative algorithms are developed and tested. The main purpose of this paper is to provide rigorous error estimates for the proposed HDG method. We first develop the error estimates based on general polyhedral/polygonal triangulations, under standard regularity assumption of the solution, the convergence analysis is presented for 1<p<2 and p>2. Nevertheless, when p approaches to the limits (p -> 1+ or p ->infinity), the convergence rate shows degeneration for both cases. Finally, this degeneration can be recovered if we use simplicial triangulation of the domain with sufficient large stabilization parameter for the method.
引用
收藏
页码:1019 / 1032
页数:14
相关论文
共 50 条
  • [11] Multiple solutions for p-Laplacian type equations
    Kristaly, Alexandru
    Lisei, Hannelore
    Varga, Csaba
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (05) : 1375 - 1381
  • [12] Singular p-Laplacian equations with superlinear perturbation
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (2-3) : 1462 - 1487
  • [13] Nontrivial solutions of superlinear p-Laplacian equations
    Fang, Fei
    Liu, Shibo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 138 - 146
  • [14] Higher integrability for nonlinear parabolic equations of p-Laplacian type
    Yao, Fengping
    ARCHIV DER MATHEMATIK, 2017, 108 (01) : 85 - 97
  • [15] Critical groups at infinity for p-Laplacian equations with indefinite nonlinearities
    Sun, Ming-Zheng
    Liu, Shu-Mao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (02) : 447 - 457
  • [16] Periodic solutions for p-Laplacian Rayleigh equations
    Cheung, Wing-Sum
    Ren, Jingli
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (10) : 2003 - 2012
  • [17] POSITIVE SOLUTIONS FOR PARAMETRIC p-LAPLACIAN EQUATIONS
    Papageorgiou, Nikolaos S.
    Smyrlis, George
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) : 1545 - 1570
  • [18] Existence solution for class of p-laplacian equations
    Bagheri, Malihe
    Bagheri, Mahnaz
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2012, 4 (01): : 53 - 59
  • [19] Equations of p-Laplacian type in unbounded domains
    De Nápoli, PL
    Mariani, MC
    ADVANCED NONLINEAR STUDIES, 2002, 2 (03) : 237 - 250
  • [20] Analysis of HDG method for the reaction-diffusion equations
    Sayari, Sayed
    Zaghdani, Abdelhamid
    El Hajji, Miled
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 396 - 409