Nonparametric estimation of the regression function from quantized observations

被引:4
作者
Benhenni, K. [1 ]
Rachdi, M. [1 ]
机构
[1] Univ Grenoble, UFR SHS, F-38040 Grenoble 09, France
关键词
quantization; growth curve; nonparametric estimation; correlated errors;
D O I
10.1016/j.csda.2005.06.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The problem of estimating the regression function for a fixed design model is considered when only quantized and correlated data are available. Moreover, repeated observations are required in order for the constructed estimator to be consistent. The asymptotic performance in terms of the mean squared error for the regression function estimator constructed from quantized observations is derived. The generated optimal bandwidth depends on the regularity of the process, the number of replications, and the number of levels of quantization. The behavior and the comparison of the performances between quantized and plain estimators are investigated through some examples. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:3067 / 3085
页数:19
相关论文
共 50 条
  • [31] Online estimation of a smooth regression function
    Khasminskii, R
    Liptser, R
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2002, 47 (03) : 541 - 550
  • [32] On change point detection in regression function using nonparametric autoregressive processes
    Kouassi, Ben Celestin
    Hili, Ouagnina
    Katchekpele, Edoh
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025, 56 (01) : 191 - 209
  • [33] AR model estimation from quantized signals
    Biscainho, LWP
    IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (02) : 183 - 185
  • [34] Distributed State Estimation Based on Quantized Observations in a Bandwidth Constrained Sensor Network
    Chai, Li
    Hu, Bocheng
    Jiang, Peng
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 2411 - +
  • [35] CRLB Based Optimal Noise Enhanced Parameter Estimation Using Quantized Observations
    Balkan, Goekce Osman
    Gezici, Sinan
    IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (05) : 477 - 480
  • [36] Nonparametric estimation of a convex bathtub-shaped hazard function
    Jankowski, Hanna K.
    Wellner, Jon A.
    BERNOULLI, 2009, 15 (04) : 1010 - 1035
  • [37] Regression function estimation as a partly inverse problem
    F. Comte
    V. Genon-Catalot
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 1023 - 1054
  • [38] Regression function estimation as a partly inverse problem
    Comte, F.
    Genon-Catalot, V.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (04) : 1023 - 1054
  • [39] Nonparametric bivariate copula estimation based on shape-restricted support vector regression
    Wang, Yongqiao
    Ni, He
    Wang, Shouyang
    KNOWLEDGE-BASED SYSTEMS, 2012, 35 : 235 - 244
  • [40] Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior
    Florens, Jean-Pierre
    Simoni, Anna
    JOURNAL OF ECONOMETRICS, 2012, 170 (02) : 458 - 475