A New Physical-layer Security Measure - Secrecy Pressure

被引:0
作者
Mucchi, Lorenzo [1 ]
Ronga, Luca [2 ]
Huang, Kaibin [3 ]
Chen, Yifan [4 ]
Wang, Rui [5 ]
机构
[1] Univ Florence, Dept Informat Engn, Via Santa Marta 3, I-50139 Florence, Italy
[2] Univ Florence, Res Unit, CNIT, I-50139 Florence, Italy
[3] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China
[4] Univ Waikato, Fac Sci & Engn, Hamilton 3240, New Zealand
[5] SUSTC, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
来源
GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE | 2017年
关键词
Physical-layer security; secrecy pressure; secrecy capacity; security of wireless communications;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The information-theoretic techniques can ensure security in communication regardless of the computational power of the attackers. The requirements for applying such techniques require: 1) an advantage over the eavesdroppers' quality of reception and 2) the location information on the eavesdropper. Traditionally, the performance of a secure communication link is measured using the metrics of secrecy capacity or outage probability, which are both related to the relative quality of the legitimate link compared with that of the eavesdropper link. In this paper, we present a new metric, called secrecy pressure, which measures the security level of the surface/environment where the legitimate link is embedded but is independent of the position of the eavesdropping node. The metric can be also visualized as a secrecy map. The analytical results show how the optimization of the secrecy pressure measure can lead to decide the optimum transmit antenna orientation and/or the position and power of an additional interfering node (friendly jammer).
引用
收藏
页数:6
相关论文
共 20 条
  • [1] [Anonymous], 2011, Physical-layer security:from information theory to security engineering, DOI DOI 10.1017/CBO9780511977985
  • [2] Asplund Henrik, 2006, IEEE T WIREL COMMUN, V5, P12
  • [3] Carcy JM, 2004, VTC2004-FALL: 2004 IEEE 60TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-7, P318
  • [4] Secrecy Rate Optimizations for a MIMO Secrecy Channel With a Cooperative Jammer
    Chu, Zheng
    Cumanan, Kanapathippillai
    Ding, Zhiguo
    Johnston, Martin
    Le Goff, Stephane Y.
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2015, 64 (05) : 1833 - 1847
  • [5] Daly M., 2009, IEEE T ANTENN PROPAG, V57
  • [6] Daly M., 2010, IEEE T ANTENN PROPAG, V58
  • [7] Directional Modulation Via Symbol-Level Precoding: A Way to Enhance Security
    Kalantari, Ashkan
    Soltanalian, Mojtaba
    Maleki, Sina
    Chatzinotas, Symeon
    Ottersten, Bjorn
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (08) : 1478 - 1493
  • [8] Securing Wireless Data Networks against Eavesdropping Using Smart Antennas
    Lakshmanan, Sriram
    Tsao, Cheng-Lin
    Sivakumar, Raghupathy
    Sundaresan, Karthikeyan
    [J]. 28TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2008, : 19 - +
  • [9] Leung-Yan-Cheong S.K., 1978, IEEE Trans. Inf. Theory, V24, P451456
  • [10] Li H, 2013, 2013 13TH CANADIAN WORKSHOP ON INFORMATION THEORY (CWIT), P214, DOI 10.1109/CWIT.2013.6621623