Complete reducibility of torsion free Cn-modules of finite degree

被引:17
作者
Britten, D
Khomenko, O
Lemire, F
Mazorchuk, V
机构
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[2] Univ Freiburg, Math Inst, D-79104 Freiburg, Germany
[3] Univ Windsor, Dept Math, Windsor, ON N9B 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/j.jalgebra.2004.02.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every torsion free weight module with finite dimensional weight spaces over a symplectic complex Lie algebra, which is different from sp(2, C), is completely reducible. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:129 / 142
页数:14
相关论文
共 11 条
[1]  
BEILINSON A, 1999, REPRESENT THEOR, V3, P1
[2]  
BERNSTEIN JN, 1980, COMPOS MATH, V41, P245
[3]  
BRITTEN D, 1993, P C HADR MECH NONP I, P111
[4]   ON BASIC CYCLES OF AN, BN, CN AND DN [J].
BRITTEN, DJ ;
LEMIRE, FW .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1985, 37 (01) :122-140
[5]   On modules of bounded multiplicities for the symplectic algebras [J].
Britten, DJ ;
Lemire, FW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (08) :3413-3431
[6]  
CHEN L, 1995, THESIS U WINDSOR
[7]  
DROZD YA, 1994, NATO ADV SCI INST SE, V424, P79
[9]   Highest weight categories of Lie algebra modules [J].
Futorny, V ;
Mazorchuk, V .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 138 (02) :107-118
[10]   Categories of induced modules and standardly stratified algebras [J].
Futorny, V ;
König, S ;
Mazorchuk, V .
ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (03) :259-276