Classification of Motor Imagery Tasks Using Phase Synchronization Analysis of EEG Based on Multivariate Empirical Mode Decomposition

被引:0
|
作者
Liang, Shuang [1 ,2 ]
Choi, Kup-Sze [3 ]
Qin, Jing [1 ,2 ]
Pang, Wai-Man [4 ]
Heng, Pheng-Ann [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Integrat Technol, Beijing 100864, Peoples R China
[2] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Sch Nursing, Hong Kong, Hong Kong, Peoples R China
[4] Caritas Inst Higher Educ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Electroencephalogram (EEG); motor imagery (MI); multivariate empirical mode decomposition (MEMD); phase synchronization; brain connectivity;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Phase synchronization has been employed to study brain networks and connectivity patterns. The phase locking value (PLV) is one of the most effective measures widely used for phase synchronization analysis. We first calculate the PLVs of the pair-wise intrinsic mode functions (IMFs) based on multivariate empirical mode decomposition (MEMD) method. Next, the average PLV of the prominent pairs relative to the rest duration is adopted for the classification of motor imagery (MI) tasks. Comparative analysis with the EMD-based PLV method, the proposed method has a significant increase in feature separability for most subjects. This paper demonstrates that MEMD-based PLV method can provide an effective feature in the MI task classification and the potential for BCI applications.
引用
收藏
页码:674 / 677
页数:4
相关论文
共 50 条
  • [1] Classification of Motor Imagery BCI Using Multivariate Empirical Mode Decomposition
    Park, Cheolsoo
    Looney, David
    Rehman, Naveed Ur
    Ahrabian, Alireza
    Mandic, Danilo P.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2013, 21 (01) : 10 - 22
  • [2] Multivariate variational mode decomposition & phase space reconstruction based motor imagery EEG classification
    Dovedi, Tanvi
    Upadhyay, Rahul
    Kumar, Vinay
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108
  • [3] Phase synchronization for classification of motor imagery EEG
    Institute of Information and Technology, Jiangxi Blue Sky University, Nanchang 330098, China
    J. Inf. Comput. Sci., 2008, 2 (949-955):
  • [4] EEG-based BCI System for Classifying Motor Imagery Tasks of the Same Hand Using Empirical Mode Decomposition
    Alazrai, Rami
    Aburub, Sarah
    Fallouh, Farah
    Daoud, Mohammad I.
    2017 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2017, : 615 - 619
  • [5] Deep Neural Network-Based Empirical Mode Decomposition for Motor Imagery EEG Classification
    Yu, Hyunsoo
    Baek, Suwhan
    Lee, Jiwoon
    Sohn, Illsoo
    Hwang, Bosun
    Park, Cheolsoo
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 3647 - 3656
  • [6] PHASE SYNCHRONIZATION ANALYSIS OF EEG CHANNELS USING BIVARIATE EMPIRICAL MODE DECOMPOSITION
    Molla, Md Khademul Islam
    Tanaka, Toshihisa
    Rutkowski, Tomasz M.
    Tanaka, Kenji
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 1182 - 1186
  • [7] Motor Imagery EEG Detection by Empirical Mode Decomposition
    Guo Xiaojing
    Wu Xiaopei
    Zhang Dexiang
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2619 - 2622
  • [8] Motor Imagery BCI Classification Based on Multivariate Variational Mode Decomposition
    Sadiq, Muhammad Tariq
    Yu, Xiaojun
    Yuan, Zhaohui
    Aziz, Muhammad Zulkifal
    Rehman, Naveed ur
    Ding, Weiping
    Xiao, Gaoxi
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (05): : 1177 - 1189
  • [9] Multivariate Empirical Mode Decomposition for Quantifying Multivariate Phase Synchronization
    Mutlu, Ali Yener
    Aviyente, Selin
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
  • [10] Multivariate Empirical Mode Decomposition for Quantifying Multivariate Phase Synchronization
    Ali Yener Mutlu
    Selin Aviyente
    EURASIP Journal on Advances in Signal Processing, 2011