Classification of Motor Imagery Tasks Using Phase Synchronization Analysis of EEG Based on Multivariate Empirical Mode Decomposition

被引:0
|
作者
Liang, Shuang [1 ,2 ]
Choi, Kup-Sze [3 ]
Qin, Jing [1 ,2 ]
Pang, Wai-Man [4 ]
Heng, Pheng-Ann [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Integrat Technol, Beijing 100864, Peoples R China
[2] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Sch Nursing, Hong Kong, Hong Kong, Peoples R China
[4] Caritas Inst Higher Educ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
来源
2014 4TH IEEE INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST) | 2014年
关键词
Electroencephalogram (EEG); motor imagery (MI); multivariate empirical mode decomposition (MEMD); phase synchronization; brain connectivity;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Phase synchronization has been employed to study brain networks and connectivity patterns. The phase locking value (PLV) is one of the most effective measures widely used for phase synchronization analysis. We first calculate the PLVs of the pair-wise intrinsic mode functions (IMFs) based on multivariate empirical mode decomposition (MEMD) method. Next, the average PLV of the prominent pairs relative to the rest duration is adopted for the classification of motor imagery (MI) tasks. Comparative analysis with the EMD-based PLV method, the proposed method has a significant increase in feature separability for most subjects. This paper demonstrates that MEMD-based PLV method can provide an effective feature in the MI task classification and the potential for BCI applications.
引用
收藏
页码:674 / 677
页数:4
相关论文
共 50 条
  • [1] Classification of Motor Imagery BCI Using Multivariate Empirical Mode Decomposition
    Park, Cheolsoo
    Looney, David
    Rehman, Naveed Ur
    Ahrabian, Alireza
    Mandic, Danilo P.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2013, 21 (01) : 10 - 22
  • [2] Classification of motor imagery movements using multivariate empirical mode decomposition and short time Fourier transform based hybrid method
    Bashar, Syed Khairul
    Bhuiyan, Mohammed Imamul Hassan
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2016, 19 (03): : 1457 - 1464
  • [3] Masking Empirical Mode Decomposition-Based Hybrid Features for Recognition of Motor Imagery in EEG
    Chen, Wanzhong
    You, Yang
    CONFERENCE PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON CONTROL SCIENCE AND SYSTEMS ENGINEERING (ICCSSE), 2017, : 548 - 551
  • [4] Analysis of schizophrenic EEG synchrony using empirical mode decomposition
    Zuo, Ziqiang
    Sadasivan, Puthusserypady
    PROCEEDINGS OF THE 2007 15TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, 2007, : 131 - +
  • [5] Motor Tasks Classification Using Phase Locking Value in a BCI Based EEG Paradigm
    Hrisca-Eva, Oana-Diana
    BALNEO AND PRM RESEARCH JOURNAL, 2024, 15 (04):
  • [6] Classification of Motor Imagery Tasks Using EEG Based on Wavelet Scattering Transform and Convolutional Neural Network
    Buragohain, Rantu
    Ajaybhai, Jejariya
    Nathwani, Karan
    Abrol, Vinayak
    IEEE SENSORS LETTERS, 2024, 8 (12)
  • [7] Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition
    Zheng, Yang
    Wang, Gang
    Li, Kuo
    Bao, Gang
    Wang, Jue
    CLINICAL NEUROPHYSIOLOGY, 2014, 125 (06) : 1104 - 1111
  • [8] Frequency decomposition and phase synchronization of the visual evoked potential using the empirical mode decomposition
    Lee, Byuckjin
    Kim, Byeongnam
    Yoo, Sun K.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2020, 65 (05): : 521 - 529
  • [9] Motor Imagery EEG Classification Using Capsule Networks
    Ha, Kwon-Woo
    Jeong, Jin-Woo
    SENSORS, 2019, 19 (13)
  • [10] Classification of EEG-based single-trial motor imagery tasks using a B-CSP method for BCI
    Zhi-chuan Tang
    Chao Li
    Jian-feng Wu
    Peng-cheng Liu
    Shi-wei Cheng
    Frontiers of Information Technology & Electronic Engineering, 2019, 20 : 1087 - 1098