ESTIMATES OF LARGE EIGENVALUES AND TRACE FORMULA FOR THE VECTORIAL STURM-LIOUVILLE EQUATIONS

被引:0
作者
Yang, Chuan-Fu [1 ]
Huang, Zhen-You [1 ]
Yang, Xiao-Ping [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Appl Math, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Vectorial Sturm-Liouville problem; eigenvalue asymptotics; trace formula; inverse spectral problem; VALUED SCHRODINGER-OPERATORS; M-FUNCTION ASYMPTOTICS; BORG-TYPE THEOREMS; HILLS EQUATION; SPECTRUM;
D O I
10.1216/RMJ-2013-43-6-2049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper describes the N-dimensional vectorial Sturm-Liouville problem with coupled boundary conditions. We first derive the asymptotic expressions of large eigenvalues for the vectorial Sturm-Liouville operator with smooth coefficients. In addition, the regularized trace formula for the operator is calculated with residue techniques in complex analysis. These formulae are then used to obtain some results of inverse eigenvalue problems in the spirit of Ambarzumyan.
引用
收藏
页码:2049 / 2078
页数:30
相关论文
共 47 条
[41]   Reconstruction of Energy-Dependent Sturm-Liouville Equations from two Spectra [J].
Pronska, Nataliya .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 76 (03) :403-419
[42]   Sharp estimates of lowest positive Neumann eigenvalue for general indefinite Sturm-Liouville problems [J].
Zhang, Zhi ;
Wang, Xun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 382 :302-320
[43]   On a uniqueness theorem of Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter [J].
Wang, Yu Ping ;
Lien, Ko Ya ;
Shieh, Chung Tsun .
BOUNDARY VALUE PROBLEMS, 2018,
[44]   TRANSMUTATION OPERATORS METHOD FOR STURM-LIOUVILLE EQUATIONS IN IMPEDANCE FORM II: INVERSE PROBLEM [J].
Kravchenko V.V. ;
Vicente-Benítez V.A. .
Journal of Mathematical Sciences, 2022, 266 (4) :554-575
[45]   SPECTRUM, TRACE AND NODAL POINTS OF A STURM-LIOUVILLE TYPE DELAYED DIFFERENTIAL OPERATOR WITH INTERFACE CONDITIONS [J].
Sen, Erdogan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (01) :283-294
[46]   Inverse Problems for Sturm-Liouville Equations with Boundary Conditions Linearly Dependent on the Spectral Parameter from Partial Information [J].
Ping, Wang Yu ;
Shieh, Chung Tsun .
RESULTS IN MATHEMATICS, 2014, 65 (1-2) :105-119
[47]   Bounds on real and imaginary parts of non-real eigenvalues of a non-definite Sturm-Liouville problem [J].
Kikonko, Mervis ;
Mingarelli, Angelo B. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (11) :6221-6232