GPUSync: A Framework for Real-Time GPU Management

被引:82
|
作者
Elliott, Glenn A. [1 ]
Ward, Bryan C. [1 ]
Anderson, James H. [1 ]
机构
[1] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27514 USA
来源
IEEE 34TH REAL-TIME SYSTEMS SYMPOSIUM (RTSS 2013) | 2013年
基金
美国国家科学基金会;
关键词
D O I
10.1109/RTSS.2013.12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes GPUSync, which is a framework for managing graphics processing units (GPUs) in multi-GPU multicore real-time systems. GPUSync was designed with flexibility, predictability, and parallelism in mind. Specifically, it can be applied under either static- or dynamic-priority CPU scheduling; can allocate CPUs/GPUs on a partitioned, clustered, or global basis; provides flexible mechanisms for allocating GPUs to tasks; enables task state to be migrated among different GPUs, with the potential of breaking such state into smaller "chunks"; provides migration cost predictors that determine when migrations can be effective; enables a single GPU's different engines to be accessed in parallel; properly supports GPU-related interrupt and worker threads according to the sporadic task model, even when GPU drivers are closed-source; and provides budget policing to the extent possible, given that GPU access is non-preemptive. No prior real-time GPU management framework provides a comparable range of features.
引用
收藏
页码:33 / 44
页数:12
相关论文
共 50 条
  • [31] A GPU Implementation of a Real-Time MIMO Detector
    Wu, Michael
    Gupta, Siddharth
    Sun, Yang
    Cavallaro, Joseph R.
    SIPS: 2009 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS, 2009, : 303 - 308
  • [32] Real-Time Marker Level Set on GPU
    Mei, Xing
    Decaudin, Philippe
    Hu, Baogang
    Zhang, Xiaopeng
    PROCEEDINGS OF THE 2008 INTERNATIONAL CONFERENCE ON CYBERWORLDS, 2008, : 209 - +
  • [33] Real-time tone mapping on GPU and FPGA
    Raquel Ureña
    Pablo Martínez-Cañada
    Juán Manuel Gómez-López
    Christian Morillas
    Francisco Pelayo
    EURASIP Journal on Image and Video Processing, 2012
  • [34] A real-time implementation of SIFT using GPU
    K. Aniruddha Acharya
    R. Venkatesh Babu
    Sathish S. Vadhiyar
    Journal of Real-Time Image Processing, 2018, 14 : 267 - 277
  • [35] Real-Time Ultrasound Simulation Using the GPU
    Gjerald, Sjur Urdson
    Brekken, Reidar
    Hergum, Torbjorn
    D'hooge, Jan
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2012, 59 (05) : 885 - 892
  • [36] Real-time ultrasound simulation using the GPU
    Gjerald, Sjur Urdson
    Brekken, Reidar
    Hergum, Torbjorn
    D'hooge, Jan
    2011 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2011, : 258 - 261
  • [37] UAVSAR Real-Time Embedded GPU Processor
    Hawkins, Brian P.
    Tung, Wayne
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 545 - 547
  • [38] Research of Real-time Terrain Rendering on GPU
    Li, Xin
    Wang, Yu
    2014 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2014), VOL 2, 2014,
  • [39] Real-time Flame Simulation Based on GPU
    Wei, Wei
    Huang, Yanqiong
    MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS, PTS 1 AND 2, 2012, 195-196 : 723 - +
  • [40] Real-Time GPU Computing: Cache or No Cache?
    Huangfu, Yijie
    Zhang, Wei
    2015 IEEE 18th International Symposium on Real-Time Distributed Computing (ISORC), 2015, : 182 - 189