Cryogenic Operation of a Millimeter-Wave SiGe BiCMOS Low-Noise Amplifier

被引:11
作者
Ramirez, Wagner [1 ,2 ,3 ]
Forsten, Henrik [4 ]
Varonen, Mikko [4 ]
Reeves, Rodrigo [2 ]
Kantanen, Mikko [4 ]
Mehmet, Kaynak [5 ]
Torres, Sergio [1 ]
机构
[1] Univ Concepcion, Dept Elect Engn, 160-C, Concepcion, Chile
[2] Univ Concepcion, Dept Astron, CePIA, 160-C, Concepcion, Chile
[3] VTT Tech Res Ctr Finland, Espoo 02044, Finland
[4] VTT Tech Res Ctr Finland, MilliLab, Espoo 02044, Finland
[5] IHP Microelect, D-15236 Frankfurt, Germany
基金
芬兰科学院;
关键词
Cryogenic; low-noise amplifier (LNA); monolithic microwave integrated circuit (MMIC); noise; silicon germanium (SiGe); TEMPERATURE;
D O I
10.1109/LMWC.2019.2911919
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we report the design and characterization of a cryogenically cooled silicon germanium (SiGe) low-noise amplifier (LNA) covering a frequency range from 50 to 70 GHz. The amplifier was fabricated in 0.13-mu m SiGe BiCMOS technology. At 20 K, the LNA showed stable operation and an average noise figure (NF) of 2.2 dB (191 K) in the 52-65-GHz frequency band. This means 4.4 times improvement compared to the noise temperature at room temperature conditions for the same frequency band. When biased to lowest noise operation at cryogenic conditions of 20 K, the measured small signal gain was 18.5 dB at 60 GHz, while the consumed power was 6.3 mW. According to the authors' knowledge, this is the first report on cryogenic millimeter-wave SiGe LNA and the lowest NF measured for a SiGe LNA in the 50-70-GHz frequency range.
引用
收藏
页码:403 / 405
页数:3
相关论文
共 14 条
[1]   A 0.1-5 GHz Cryogenic SiGe MMIC LNA [J].
Bardin, Joseph C. ;
Weinreb, Sander .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2009, 19 (06) :407-409
[2]  
Bardin JC, 2008, IEEE MTT S INT MICR, P458, DOI 10.1109/MWSYM.2008.4633202
[3]   A 0.8 THz fMAX SiGe HBT Operating at 4.3 K [J].
Chakraborty, Partha S. ;
Cardoso, Adilson S. ;
Wier, Brian R. ;
Omprakash, Anup P. ;
Cressler, John D. ;
Kaynak, Mehmet ;
Tillack, Bernd .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (02) :151-153
[4]   Broadband MMIC LNAs for ALMA Band 2+3 With Noise Temperature Below 28 K [J].
Cuadrado-Calle, David ;
George, Danielle ;
Fuller, Gary A. ;
Cleary, Kieran ;
Samoska, Lorene ;
Kangaslahti, Pekka ;
Kooi, Jacob W. ;
Soria, Mary ;
Varonen, Mikko ;
Lai, Richard ;
Mei, Xiaobing .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (05) :1589-1597
[5]  
Davidson A., 1990, 36th ARFTG Conference Digest. Fall 1990. Automatic RF Techniques Group, P57, DOI 10.1109/ARFTG.1990.323996
[6]   Extremely low-noise amplification with cryogenic FETs and HFETs: 1970-2004 [J].
Pospieszalski, MW .
IEEE MICROWAVE MAGAZINE, 2005, 6 (03) :62-75
[7]   Low-Power Very Low-Noise Cryogenic SiGe IF Amplifiers for Terahertz Mixer Receivers [J].
Russell, Damon ;
Weinreb, Sander .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (06) :1641-1648
[8]   Cryogenic probe station for on-wafer characterization of electrical devices [J].
Russell, Damon ;
Cleary, Kieran ;
Reevesc, Rodrigo .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (04)
[9]   Ultralow-Power Cryogenic InP HEMT With Minimum Noise Temperature of 1 K at 6 GHz [J].
Schleeh, J. ;
Alestig, G. ;
Halonen, J. ;
Malmros, A. ;
Nilsson, B. ;
Nilsson, P. A. ;
Starski, J. P. ;
Wadefalk, N. ;
Zirath, H. ;
Grahn, J. .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (05) :664-666
[10]  
Sieth M., 2014, P SOC PHOTO-OPT INS, V9153, P1