On Repeated-Root Constacyclic Codes of Prime Power Length Over Polynomial Residue Rings

被引:0
作者
Dinh, Hai Q. [1 ]
机构
[1] Kent State Univ, Dept Math Sci, Warren, OH 44483 USA
来源
ALGEBRA FOR SECURE AND RELIABLE COMMUNICATION MODELING | 2015年 / 642卷
关键词
Constacyclic codes; dual codes; chain rings; polynomial residue rings; Galois rings; Hamming distance; homogeneous distance; NEGACYCLIC CODES; CYCLIC CODES; PREPARATA; KERDOCK; Z(4); 2(S);
D O I
10.1090/conm/642/12887
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The polynomial residue ring R-a = F(p)m[u]/< u(a)> = F(p)m + uF(p)n + ... + u(a-1)F(p)m is a chain ring with residue field F(p)m, that contains precisely (p(m)-1)p(m(a-1)) units, namely, alpha(0) + u alpha(1) + ... + u(a-1) alpha(a-1) where alpha(0), alpha(1), ... , alpha(a-1) is an element of F(p)m, alpha(0) not equal 0. We classify these units into a-1 types, and show that any constacyclic code of length p(s) of the type k is in a one-to-one correspondence to a constacyclic code of length p(s) of simpler type k* via a ring isomorphism. Two classes of units of R-a, are considered in details, namely, lambda = 1 +u lambda 1 + ... +u(a-l)lambda(a-1), where lambda(1), ... , lambda(a-1) is an element of F(p)m, lambda(1) not equal 0; and Lambda = Lambda(0) +u Lambda(1) + ... +u(a-1)Lambda(a-1), where Lambda(0), Lambda(1), ... , Lambda(a-1) is an element of F(p)m, Lambda(0) not equal 0, Lambda(1) not equal 0. Among other results, the structure, Hamming and homogeneous distances of lambda- and Lambda-constacyclic codes of length p(s) over R-a are established.
引用
收藏
页码:225 / 240
页数:16
相关论文
共 46 条
[1]   A mass formula and rank of Z4 cyclic codes of length 2e [J].
Abualrub, T ;
Ghrayeb, A ;
Oehmke, RH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (12) :3306-3312
[2]  
Alfaro R., 2009, INVOLVE, V2, P177, DOI [10.2140/involve.2009.2.177, DOI 10.2140/INVOLVE.2009.2.177]
[3]  
Berman S.D., 1967, Kibernetika, vol, V3, P17
[4]   Negacyclic codes over Z4 of even length [J].
Blackford, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (06) :1417-1424
[5]   Cyclic codes and self-dual codes over F2+uF2 [J].
Bonnecaze, A ;
Udaya, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1250-1255
[6]   A LINEAR CONSTRUCTION FOR CERTAIN KERDOCK AND PREPARATA CODES [J].
CALDERBANK, AR ;
HAMMONS, AR ;
KUMAR, PV ;
SLOANE, NJA ;
SOLE, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :218-222
[7]   ON REPEATED-ROOT CYCLIC CODES [J].
CASTAGNOLI, G ;
MASSEY, JL ;
SCHOELLER, PA ;
VONSEEMANN, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :337-342
[8]  
Constaninescu I, 1995, THESIS
[9]  
Constantinescu I., 1996, P 5 INT WORKSH ALG C, P98
[10]   On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions [J].
Dinh, Hai Q. .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (01) :22-40