On-line MR imaging for dose validation of abdominal radiotherapy

被引:33
作者
Glitzner, M. [1 ]
Crijns, S. P. M. [1 ]
de Senneville, B. Denis [1 ,2 ]
Kontaxis, C. [1 ]
Prins, F. M. [1 ]
Lagendijk, J. J. W. [1 ]
Raaymakers, B. W. [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiotherapy, NL-3584 CX Utrecht, Netherlands
[2] Univ Bordeaux, UMR CNRS 5251, Math Inst Bordeaux, F-33405 Talence, France
基金
欧洲研究理事会;
关键词
dose reconstruction; respiratory motion compensation; adaptive radiotherapy; hypofractionated treatment; local deformations; MR guidance; TRACKING SYSTEM; RECONSTRUCTION; MOTION; MLC; ORGANS;
D O I
10.1088/0031-9155/60/22/8869
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial. Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra-and interfraction anatomy is dynamic and changes can be significant. In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur. The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions. In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose. Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations -2.3-1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from -2.5 to 1.9 Gy could be traced back.
引用
收藏
页码:8869 / 8883
页数:15
相关论文
共 50 条
[21]   Surrogate-free machine learning-based organ dose reconstruction for pediatric abdominal radiotherapy [J].
Virgolin, M. ;
Wang, Z. ;
Balgobind, B., V ;
van Dijk, I. W. E. M. ;
Wiersma, J. ;
Kroon, P. S. ;
Janssens, G. O. ;
van Herk, M. ;
Hodgson, D. C. ;
Zaletel, L. Zadravec ;
Rasch, C. R. N. ;
Bel, A. ;
Bosman, P. A. N. ;
Alderliesten, T. .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (24)
[22]   On-line clearing and staining method for the efficient optical imaging of large volume samples at the cellular resolution [J].
Zhang, Yunfei ;
Liu, Guangcai ;
Li, Xiangning ;
Gong, Hui ;
Luo, Qingming ;
Yang, Xiaoquan .
BIOMEDICAL OPTICS EXPRESS, 2023, 14 (09) :4800-4813
[23]   Quantification of Hepatic Steatosis with 3-T MR Imaging: Validation in ob/ob Mice [J].
Hines, Catherine D. G. ;
Yu, Huanzhou ;
Shimakawa, Ann ;
McKenzie, Charles A. ;
Warner, Thomas F. ;
Brittain, Jean H. ;
Reeder, Scott B. .
RADIOLOGY, 2010, 254 (01) :119-128
[24]   Effect of the Small Field of View and Imaging Parameters to Image Quality and Dose Calculation in Adaptive Radiotherapy [J].
Ubaidillah, Allam ;
Fauzia, Annisa Rahma ;
Purnomo, Adi Teguh ;
Nasution, Nuruddin ;
Wibowo, Wahyu Edy ;
Pawiro, Supriyanto Ardjo .
POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING, 2023, 29 (02) :130-142
[25]   Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy [J].
Stemkens, Bjorn ;
Tijssen, Rob H. N. ;
de Senneville, Baudouin Denis ;
Lagendijk, Jan J. W. ;
van den Berg, Cornelis A. T. .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (14) :5335-5355
[26]   Validation of a drift-corrected 3D MR temperature imaging sequence for breast MR-guided focused ultrasound treatments [J].
Adams-Tew, Samuel I. ;
Johnson, Sara ;
Od, Henrik ;
Parker, Dennis L. ;
Payne, Allison .
MAGNETIC RESONANCE IMAGING, 2023, 96 :126-134
[27]   Uterus motion analysis for radiotherapy planning optimization. The innovative contribution of on-board hybrid MR imaging [J].
Romano, Angela ;
Votta, Claudio ;
Nardini, Matteo ;
Chiloiro, Giuditta ;
Panza, Giulia ;
Boldrini, Luca ;
Cusumano, Davide ;
Galofaro, Elena ;
Placidi, Lorenzo ;
Antonelli, Marco Valerio ;
Turco, Gabriele ;
Autorino, Rosa ;
Gambacorta, Maria Antonietta .
CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2024, 47
[28]   Effect of the Relationship between Respiratory Interval and Temporal Resolution on Image Quality in Free-breathing Abdominal MR Imaging [J].
Oyama, Kazuki ;
Kurashina, Mariko ;
Ichinohe, Fumihito ;
Yamada, Akira ;
Kitoh, Yoshihiro ;
Hayashihara, Hayato ;
Fujihara, Shuya ;
Nickel, Marcel D. ;
Maruyama, Katsuya ;
Fujinaga, Yasunari .
MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2024,
[29]   Gradient system characterization of a 1.5 T MR-Linac with application to 4D UTE imaging for adaptive MR-guided radiotherapy of lung cancer [J].
Goodburn, Rosie ;
Bruijnen, Tom ;
Lecoeur, Bastien ;
Nair, Prashant ;
Ahmed, Merina ;
Barnes, Helen ;
Oelfke, Uwe ;
Wetscherek, Andreas .
MAGNETIC RESONANCE IN MEDICINE, 2025, :28-40
[30]   On-line daily plan optimization combined with a virtual couch shift procedure to address intrafraction motion in prostate magnetic resonance guided radiotherapy [J].
Keizer, Daan M. de Muinck ;
van Zyp, Jochem R. N. van der Voort ;
De Groot-van Breugel, Eline N. ;
Raaymakers, Bas W. ;
Lagendijk, Jan J. W. ;
de Boer, Hans C. J. .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2021, 19 :90-95