Effect of the Combined Addition of Y and Ti on the Second Phase and Mechanical Properties of China Low-Activation Martensitic Steel

被引:7
作者
Zhang, Yangpeng [1 ]
Zhan, Dongping [2 ]
Qi, Xiwei [1 ]
Jiang, Zhouhua [2 ]
Zhang, Huishu [3 ]
机构
[1] Northwestern Univ, Sch Mat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
[2] Northwestern Univ, Sch Met, POB 241,3-11 Wenhua Rd, Shenyang 110819, Liaoning, Peoples R China
[3] Liaoning Inst Sci & Technol, Met Engn Coll, Benxi 117004, Peoples R China
基金
中国国家自然科学基金;
关键词
CLAM steel; mechanical properties; rare earths; second phase; titanium; yttrium; RESEARCH-AND-DEVELOPMENT; CLAM STEEL; FERRITIC/MARTENSITIC STEELS; RECENT PROGRESS; ODS ALLOYS; DISPERSION; MICROSTRUCTURE; NUCLEATION; FERRITE; STRENGTH;
D O I
10.1007/s11665-018-3324-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, approximately 0.35% Ti and two different Y contents were added to China low-activation martensitic (CLAM) steel during melting in a vacuum induction melting furnace. Scanning electron microscopy, transmission electron microscopy, x-ray diffraction, tensile tests, and Charpy impact tests were used to investigate the effects of the combined addition of Y and Ti on the second phase and mechanical properties. The results indicated that Y and Fe formed the large intermetallic compound Fe-Y; the compound easily aggregated in the grain boundaries and exhibited the strength of CLAM steel. Ti did not combine with Y to form the Y-Ti-O phase; however, it could combine with Ta and W to form MC precipitates, which were generally in the 20-50 nm size range. The CLAM steel with a higher Y content exhibited lower yield and tensile strengths at room temperature, with both steels yielding almost identical strengths at 600 A degrees C.
引用
收藏
页码:2239 / 2246
页数:8
相关论文
共 23 条
[1]   Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel [J].
Byun, JS ;
Shim, JH ;
Cho, YW ;
Lee, DN .
ACTA MATERIALIA, 2003, 51 (06) :1593-1606
[2]   Characterization of ODS (Oxide Dispersion Strengthened) Eurofer/Eurofer dissimilar electron beam welds [J].
Commin, L. ;
Rieth, M. ;
Widak, V. ;
Dafferner, B. ;
Heger, S. ;
Zimmermann, H. ;
Materna-Morris, E. ;
Lindau, R. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 442 (1-3) :S552-S556
[3]  
Han W. T., 2017, J NUCL MATER, V455, P46
[4]   Recent progress of R&D activities on reduced activation ferritic/martensitic steels [J].
Huang, Q. ;
Baluc, N. ;
Dai, Y. ;
Jitsukawa, S. ;
Kimura, A. ;
Konys, J. ;
Kurtz, R. J. ;
Lindau, R. ;
Muroga, T. ;
Odette, G. R. ;
Raj, B. ;
Stoller, R. E. ;
Tan, L. ;
Tanigawa, H. ;
Tavassoli, A. -A. F. ;
Yamamoto, T. ;
Wan, F. ;
Wu, Y. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 442 (1-3) :S2-S8
[5]   Development status of CLAM steel for fusion application [J].
Huang, Qunying .
JOURNAL OF NUCLEAR MATERIALS, 2014, 455 (1-3) :649-654
[6]   The mechanisms of microstructure formation in a nanostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering [J].
Ji, Gang ;
Grosdidier, Thierry ;
Bozzolo, Nathalie ;
Launois, Sebastien .
INTERMETALLICS, 2007, 15 (02) :108-118
[7]   Recent progress in reduced activation ferritic steels R&D in Japan [J].
Kimura, A ;
Sawai, T ;
Shiba, K ;
Hishinuma, A ;
Jitsukawa, S ;
Ukai, S ;
Kohyama, A .
NUCLEAR FUSION, 2003, 43 (10) :1246-1249
[8]   High burnup fuel cladding materials R&D for advanced nuclear systems - Nano-sized oxide dispersion strengthening steels [J].
Kimura, Akihiko ;
Cho, Han-Sik ;
Toda, Naoki ;
Kasada, Ryuta ;
Yutani, Kentaro ;
Kishimoto, Hirotatsu ;
Iwata, Noriyuki ;
Ukai, Shigeharu ;
Fujiwara, Masayuki .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2007, 44 (03) :323-328
[9]   Reduced-activation steels: Future development for improved creep strength [J].
Klueh, R. L. .
JOURNAL OF NUCLEAR MATERIALS, 2008, 378 (02) :159-166
[10]   Ferritic/martensitic steels - overview of recent results [J].
Klueh, RL ;
Gelles, DS ;
Jitsukawa, S ;
Kimura, A ;
Odette, GR ;
van der Schaaf, B ;
Victoria, M .
JOURNAL OF NUCLEAR MATERIALS, 2002, 307 (1 SUPPL.) :455-465