Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method

被引:110
作者
Song, Seong Hyeok [1 ]
Paulino, Glaucio H. [1 ]
机构
[1] Univ Illinois, Dept Civil & Environm Engn, Newmark Lab, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
dynamic stress intensity factors (DSIFs); interaction integral; non-homogeneous materials; functionally graded materials (FGMs);
D O I
10.1016/j.ijsolstr.2005.06.102
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Dynamic stress intensity factors (DSIFs) are important fracture parameters in understanding and predicting dynamic fracture behavior of a cracked body. To evaluate DSIFs for both homogeneous and non-homogeneous materials, the interaction integral (conservation integral) originally proposed to evaluate SIB for a static homogeneous medium is extended to incorporate dynamic effects and material non-homogeneity, and is implemented in conjunction with the finite element method (FEM). The technique is implemented and verified using benchmark problems. Then, various homogeneous and non-homogeneous cracked bodies under dynamic loading are employed to investigate dynamic fracture behavior such as the variation of DSIFs for different material property profiles, the relation between initiation time and the domain size (for integral evaluation), and the contribution of each distinct term in the interaction integral. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4830 / 4866
页数:37
相关论文
共 52 条
[1]  
Anderson TL., 1994, FRACTURE MECH FUNDAM, P41
[2]   ELASTODYNAMIC ANALYSIS OF CRACK BY FINITE-ELEMENT METHOD USING SINGULAR ELEMENT [J].
AOKI, S ;
KISHIMOTO, K ;
KONDO, H ;
SAKATA, M .
INTERNATIONAL JOURNAL OF FRACTURE, 1978, 14 (01) :59-68
[3]   ELEMENT-FREE GALERKIN METHODS FOR STATIC AND DYNAMIC FRACTURE [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L ;
TABBARA, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1995, 32 (17-18) :2547-2570
[4]   A FEM ANALYSIS OF CRACK ARREST EXPERIMENTS [J].
BRICKSTAD, B .
INTERNATIONAL JOURNAL OF FRACTURE, 1983, 21 (03) :177-194
[5]  
BUI HD, 1983, J MECH PHYS SOLIDS, V31, P439, DOI 10.1016/0022-5096(83)90010-8
[6]  
BUTTLAR WG, 2005, IN PRESS ASCE J ENG
[7]  
Chen Y. M., 1975, Engineering Fracture Mechanics, V7, P653, DOI 10.1016/0013-7944(75)90021-1
[8]   STRESS ANALYSIS OF CRACK PROBLEMS WITH A 3-DIMENSIONAL, TIME-DEPENDENT COMPUTER-PROGRAM [J].
CHEN, YM ;
WILKINS, ML .
INTERNATIONAL JOURNAL OF FRACTURE, 1976, 12 (04) :607-617
[9]  
DOLBOW J, 2000, INT J SOLIDS STRUCT, V39, P2557
[10]   TIME DOMAIN BOUNDARY ELEMENT METHOD FOR DYNAMIC STRESS INTENSITY FACTOR COMPUTATIONS [J].
DOMINGUEZ, J ;
GALLEGO, R .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 33 (03) :635-647