Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation

被引:16
|
作者
Borovok, Natalia
Nesher, Elimelech [2 ]
Levin, Yishai [3 ]
Reichenstein, Michal [1 ]
Pinhasov, Albert [2 ]
Michaelevski, Izhak [1 ,4 ]
机构
[1] Tel Aviv Univ, Dept Biochem & Mol Biol, IL-6997801 Tel Aviv, Israel
[2] Ariel Univ, Dept Mol Biol, IL-4070000 Ariel, Israel
[3] Weizmann Inst Sci, de Botton Inst Prot Profiling, Nancy & Stephen Grand Israel Natl Ctr Personalize, IL-7610001 Rehovot, Israel
[4] Tel Aviv Univ, Sagol Sch Neurosci, IL-6997801 Tel Aviv, Israel
关键词
LASTING SYNAPTIC PLASTICITY; DATA-INDEPENDENT ANALYSIS; POTENTIATION IN-VIVO; LATE-PHASE; GLUTAMATE RECEPTORS; ASSOCIATIVE MEMORY; COGNITIVE IMPAIRMENT; INTERACTION NETWORKS; BIOLOGICAL NETWORKS; RECOGNITION MEMORY;
D O I
10.1074/mcp.M115.051318
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams.
引用
收藏
页码:523 / 541
页数:19
相关论文
共 50 条
  • [21] Chronic dietary chlorpyrifos causes long-term spatial memory impairment and thigmotaxic behavior
    Lopez-Granero, Caridad
    Ruiz-Munoz, Ana M.
    Nieto-Escamez, Francisco A.
    Colomina, Maria T.
    Aschner, Michael
    Sanchez-Santed, Fernando
    NEUROTOXICOLOGY, 2016, 53 : 85 - 92
  • [22] Brain mechanisms of visual long-term memory retrieval in primates
    Takeda, Masaki
    NEUROSCIENCE RESEARCH, 2019, 142 : 7 - 15
  • [23] Visual memory, the long and the short of it: A review of visual working memory and long-term memory
    Schurgin, Mark W.
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2018, 80 (05) : 1035 - 1056
  • [24] Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory
    Havekes, Robbert
    Park, Alan J.
    Tolentino, Rosa E.
    Bruinenberg, Vibeke M.
    Tudor, Jennifer C.
    Lee, Yool
    Hansen, Rolf T.
    Guercio, Leonardo A.
    Linton, Edward
    Neves-Zaph, Susana R.
    Meerlo, Peter
    Baillie, George S.
    Houslay, Miles D.
    Abel, Ted
    JOURNAL OF NEUROSCIENCE, 2016, 36 (34): : 8936 - 8946
  • [25] Ipsilateral hippocampal atrophy is associated with long-term memory dysfunction after ischemic stroke in young adults
    Schaapsmeerders, Pauline
    van Uden, Inge W. M.
    Tuladhar, Anil M.
    Maaijwee, Noortje A. M.
    van Dijk, Ewoud J.
    Rutten-Jacobs, Loes C. A.
    Arntz, Renate M.
    Schoonderwaldt, Hennie C.
    Dorresteijn, Lucille D. A.
    de Leeuw, Frank-Erik
    Kessels, Roy P. C.
    HUMAN BRAIN MAPPING, 2015, 36 (07) : 2432 - 2442
  • [26] Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation
    Liu, Hui-li
    Zhao, Gang
    Cai, Kui
    Zhao, Hai-hua
    Shi, Li-de
    BEHAVIOURAL BRAIN RESEARCH, 2011, 218 (02) : 308 - 314
  • [27] A Critical Role for the Nucleus Reuniens in Long-Term, But Not Short-Term Associative Recognition Memory Formation
    Barker, Gareth R. I.
    Warburton, Elizabeth Clea
    JOURNAL OF NEUROSCIENCE, 2018, 38 (13): : 3208 - 3217
  • [28] Binding neutral information to emotional contexts: Brain dynamics of long-term recognition memory
    Carlos Ventura-Bort
    Andreas Löw
    Julia Wendt
    Javier Moltó
    Rosario Poy
    Florin Dolcos
    Alfons O. Hamm
    Mathias Weymar
    Cognitive, Affective, & Behavioral Neuroscience, 2016, 16 : 234 - 247
  • [29] Binding neutral information to emotional contexts: Brain dynamics of long-term recognition memory
    Ventura-Bort, Carlos
    Loew, Andreas
    Wendt, Julia
    Molto, Javier
    Poy, Rosario
    Dolcos, Florin
    Hamm, Alfons O.
    Weymar, Mathias
    COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE, 2016, 16 (02) : 234 - 247
  • [30] Activity-Dependent Regulation of Alternative Cleavage and Polyadenylation During Hippocampal Long-Term Potentiation
    Fontes, Mariana M.
    Guvenek, Aysegul
    Kawaguchi, Riki
    Zheng, Dinghai
    Huang, Alden
    Ho, Victoria M.
    Chen, Patrick B.
    Liu, Xiaochuan
    O'Dell, Thomas J.
    Coppola, Giovanni
    Tian, Bin
    Martin, Kelsey C.
    SCIENTIFIC REPORTS, 2017, 7