Direct and inverse problems related to MEMS

被引:16
作者
Cassani, Daniele [1 ]
Kaltenbacher, Barbara [2 ]
Lorenzi, Alfredo [1 ]
机构
[1] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[2] Univ Stuttgart, Fachbereich Math, D-70569 Stuttgart, Germany
关键词
D O I
10.1088/0266-5611/25/10/105002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with direct and inverse evolution problems which come up in studying micro-electro-mechanical-systems: here we consider a nonlinear and nonlocal MEMS model. The inverse problem consists of recovering a time-varying Coulomb potential by exploiting some accessible measurements, which depend on the dynamic displacement of the system. Local existence, uniqueness and continuous dependence results are proved for both direct and inverse problems.
引用
收藏
页数:22
相关论文
共 16 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[3]  
Cassani D, 2009, ADV NONLINEAR STUD, V9, P177
[4]  
Duvaut G., 1976, INEQUALITIES MECH PH, Vfirst, DOI [10.1007/978-3-642-66165-5, DOI 10.1007/978-3-642-66165-5]
[5]   Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity [J].
Esposito, Pierpaolo ;
Ghoussoub, Nassif ;
Guo, Yujin .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (12) :1731-1768
[6]   ANALYSIS OF THE DYNAMICS AND TOUCHDOWN IN A MODEL OF ELECTROSTATIC MEMS [J].
Flores, G. ;
Mercado, G. ;
Pelesko, J. A. ;
Smyth, N. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (02) :434-446
[7]   On the partial differential equations of electrostatic MEMS devices: Stationary case [J].
Ghoussoub, Nassif ;
Guo, Yujin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (05) :1423-1449
[8]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[9]   Nonlinear non-local elliptic equation modelling electrostatic actuation [J].
Lin, Fanghua ;
Yang, Yisong .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2081) :1323-1337
[10]  
Lions J.L, 1968, Problemes Aux Limites Non Homogenes