Renormalization group analysis of the self-avoiding paths on the D-dimensional Sierpinski gaskets

被引:5
作者
Hattori, T [1 ]
Tsuda, T
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Daiichi Mutual Life Insurance, Chiyoda Ku, Tokyo 1008411, Japan
关键词
renormalization group; self-avoiding walk; fractals; Sierpinski gasket;
D O I
10.1023/A:1019927309542
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Notion of the renormalization group dynamical system, the self-avoiding fixed point and the critical trajectory are mathematically defined for the set of self-avoiding walks on the d-dimensional pre-Sierpinski gaskets (n-simplex lattices), such that their existence imply the asymptotic behaviors of the self-avoiding walks, such as the existence of the limit distributions of the scaled path lengths of "canonical ensemble," the connectivity constant (exponential growth of path numbers with respect to the length), and the exponent for mean square displacement. We apply the so defined framework to prove these asymptotic behaviors of the restricted self-avoiding walks on the 4-dimensional pre-Sierpinski gasket.
引用
收藏
页码:39 / 66
页数:28
相关论文
共 12 条
[1]   SELF-AVOIDING RANDOM-WALKS - SOME EXACTLY SOLUBLE CASES [J].
DHAR, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (01) :5-11
[2]   SELF-AVOIDING WALK IN 5 OR MORE DIMENSIONS .1. THE CRITICAL-BEHAVIOR [J].
HARA, T ;
SLADE, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :101-136
[3]  
Hara T., 1995, Combin. Probab. Comput, V4, P197, DOI DOI 10.1017/S0963548300001607
[4]   SELF-AVOIDING PROCESS ON THE SIERPINSKI GASKET [J].
HATTORI, K ;
HATTORI, T .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 88 (04) :405-428
[5]   SELF-AVOIDING PATHS ON THE PRE-SIERPINSKI GASKET [J].
HATTORI, K ;
HATTORI, T ;
KUSUOKA, S .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 84 (01) :1-26
[6]   SELF-AVOIDING PATHS ON THE 3-DIMENSIONAL SIERPINSKI GASKET [J].
HATTORI, K ;
HATTORI, T ;
KUSUOKA, S .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1993, 29 (03) :455-509
[7]   TRANSITION DENSITY OF DIFFUSION ON THE SIERPINSKI GASKET AND EXTENSION OF FLORYS FORMULA [J].
HATTORI, T ;
NAKAJIMA, H .
PHYSICAL REVIEW E, 1995, 52 (01) :1202-1205
[8]   THE EXPONENT FOR THE MEAN-SQUARE DISPLACEMENT OF SELF-AVOIDING RANDOM-WALK ON THE SIERPINSKI GASKET [J].
HATTORI, T ;
KUSUOKA, S .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 93 (03) :273-284
[9]  
HATTORI T, 02225 MATH PHYS
[10]  
Irwin MC, 1980, SMOOTH DYNAMICAL SYS