Existence and stability of bistable wavefronts in a nonlocal delayed reaction-diffusion epidemic system

被引:0
作者
Li, Kun [1 ]
Li, Xiong [2 ]
机构
[1] Hunan First Normal Univ, Sch Math & Computat Sci, Changsha 410205, Hunan, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Travelling wave front; nonlocal delay; contraction technique; upper and lower solutions; FUNCTIONAL-DIFFERENTIAL EQUATIONS; TRAVELING-WAVES; ASYMPTOTIC STABILITY; SPREAD; MODEL; CONVERGENCE; SPEED;
D O I
10.1017/S0956792520000078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the monotone travelling wave solutions of a reaction diffusion epidemic system with nonlocal delays. We obtain the existence of monotone travelling wave solutions by applying abstract existence results. By transforming the nonlocal delayed system to a non-delayed system and choosing suitable small positive constants to define a pair of new upper and lower solutions, we use the contraction technique to prove the asymptotic stability (up to translation) of monotone travelling waves. Furthermore, the uniqueness and Lyapunov stability of monotone travelling wave solutions will be established with the help of the upper and lower solution method and the exponential asymptotic stability.
引用
收藏
页码:146 / 176
页数:31
相关论文
共 44 条
[1]   Traveling wave fronts for generalized Fisher equations with spatio-temporal delays [J].
Ai, Shangbing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (01) :104-133
[2]   A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic systems [J].
Anita, S ;
Capasso, V .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (04) :453-464
[3]   Travelling fronts for the KPP equation with spatio-temporal delay [J].
Ashwin, P ;
Bartuccelli, MV ;
Bridges, TJ ;
Gourley, SA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (01) :103-122
[4]   Spectral analysis of traveling waves for nonlocal evolution equations [J].
Bates, Peter W. ;
Chen, Fengxin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (01) :116-126
[5]   A REACTION-DIFFUSION SYSTEM ARISING IN MODELING MAN-ENVIRONMENT DISEASES [J].
CAPASSO, V ;
KUNISCH, K .
QUARTERLY OF APPLIED MATHEMATICS, 1988, 46 (03) :431-450
[6]   CONVERGENCE TO EQUILIBRIUM STATES FOR A REACTION-DIFFUSION SYSTEM MODELING THE SPATIAL SPREAD OF A CLASS OF BACTERIAL AND VIRAL DISEASES [J].
CAPASSO, V ;
MADDALENA, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 1981, 13 (02) :173-184
[7]   SADDLE-POINT BEHAVIOR FOR A REACTION-DIFFUSION SYSTEM - APPLICATION TO A CLASS OF EPIDEMIC MODELS [J].
CAPASSO, V ;
MADDALENA, L .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1982, 24 (06) :540-547
[8]   Analysis of a reaction-diffusion system modeling man-environment-man epidemics [J].
Capasso, V ;
Wilson, RE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (02) :327-346
[10]  
CAPASSO V, 1979, REV EPIDEMIOL SANTE, V27, P121