Multiclass Probability Estimation With Support Vector Machines

被引:4
|
作者
Wang, Xin [1 ]
Zhang, Hao Helen [2 ]
Wu, Yichao [3 ]
机构
[1] Qiagen, Cary, NC USA
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[3] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60680 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
LDA; Logistic regression; Multiclass classification; Probability estimation; Support vector machines; CLASSIFICATION; MARGIN;
D O I
10.1080/10618600.2019.1585260
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multiclass classification and probability estimation have important applications in data analytics. Support vector machines (SVMs) have shown great success in various real-world problems due to their high classification accuracy. However, one main limitation of standard SVMs is that they do not provide class probability estimates, and thus fail to offer uncertainty measure about class prediction. In this article, we propose a simple yet effective framework to endow kernel SVMs with the feature of multiclass probability estimation. The new probability estimator does not rely on any parametric assumption on the data distribution, therefore, it is flexible and robust. Theoretically, we show that the proposed estimator is asymptotically consistent. Computationally, the new procedure can be conveniently implemented using standard SVM softwares. Our extensive numerical studies demonstrate competitive performance of the new estimator when compared with existing methods such as multiple logistic regression, linear discrimination analysis, tree-based methods, and random forest, under various classification settings. for this article are available online.
引用
收藏
页码:586 / 595
页数:10
相关论文
共 50 条
  • [1] Multiclass posterior probability support vector machines
    Gonen, Mehmet
    Tanugur, Ayse Goenuel
    Alpaydin, Ethern
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (01): : 130 - 139
  • [2] Classifying data sets using posterior probability for multiclass support vector machines
    Wang, Hongmei
    Zeng, Yuan
    Zhao, Zheng
    Wang, Chengshan
    Journal of Computational Information Systems, 2008, 4 (02): : 541 - 546
  • [3] Multiclass proximal support vector machines
    Tang, Yongqiang
    Zhang, Hao Helen
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (02) : 339 - 355
  • [4] Fuzzy pairwise multiclass support vector machines
    Puche, J. M.
    Benitez, J. M.
    Castro, J. L.
    Mantas, C. J.
    MICAI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4293 : 562 - +
  • [5] Multiclass Probabilistic Classification for Support Vector Machines
    Bae, Ji-Sang
    Kim, Jong-Ok
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (06): : 1251 - 1255
  • [6] Compact Fuzzy Multiclass Support Vector Machines
    Lu, Shuxia
    Shi, Pu
    Liu, Xianhao
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2008, : 36 - +
  • [7] Evolutionary design of multiclass support vector machines
    Lorena, Ana C.
    Carvalho, Andre C. P. L. F.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2007, 18 (05) : 445 - 454
  • [8] Feature selection for multiclass support vector machines
    Aazi, F. Z.
    Abdesselam, R.
    Achchab, B.
    Elouardighi, A.
    AI COMMUNICATIONS, 2016, 29 (05) : 583 - 593
  • [9] A comparison of methods for multiclass support vector machines
    Hsu, CW
    Lin, CJ
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (02): : 415 - 425
  • [10] On multiclass active learning with support vector machines
    Brinker, K
    ECAI 2004: 16TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 110 : 969 - 970