Band structure engineering of 2D materials using patterned dielectric superlattices

被引:189
作者
Forsythe, Carlos [1 ]
Zhou, Xiaodong [1 ,2 ]
Watanabe, Kenji [3 ]
Taniguchi, Takashi [3 ]
Pasupathy, Abhay [4 ]
Moon, Pilkyung [4 ,5 ]
Koshino, Mikito [6 ]
Kim, Philip [7 ]
Dean, Cory R. [1 ]
机构
[1] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[2] Fudan Univ, Lab Adv Mat, Shanghai, Peoples R China
[3] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
[4] NYU Shanghai, Shanghai, Shanghai, Peoples R China
[5] NYU Shanghai, NYU ECNU Inst Phys, Shanghai, Peoples R China
[6] Osaka Univ, Dept Phys, Toyonaka, Osaka, Japan
[7] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
日本学术振兴会; 美国国家科学基金会;
关键词
DIRAC FERMIONS; GRAPHENE SUPERLATTICES; SUBBAND STRUCTURE; MAGNETIC-FIELDS; BLOCH ELECTRONS; LATTICES;
D O I
10.1038/s41565-018-0138-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The ability to manipulate electrons in two-dimensional materials with external electric fields provides a route to synthetic band engineering. By imposing artificially designed and spatially periodic superlattice potentials, electronic properties can be further altered beyond the constraints of naturally occurring atomic crystals(1-5). Here, we report a new approach to fabricate high-mobility superlattice devices by integrating surface dielectric patterning with atomically thin van der Waals materials. By separating the device assembly and superlattice fabrication processes, we address the intractable trade-off between device processing and mobility degradation that constrains superlattice engineering in conventional systems. The improved electrostatics of atomically thin materials allows smaller wavelength superlattice patterns relative to previous demonstrations. Moreover, we observe the formation of replica Dirac cones in ballistic graphene devices with sub-40 nm wavelength superlattices and report fractal Hofstadter spectra(6-8) under large magnetic fields from superlattices with designed lattice symmetries that differ from that of the host crystal. Our results establish a robust and versatile technique for band structure engineering of graphene and related van der Waals materials with dynamic tunability.
引用
收藏
页码:566 / +
页数:7
相关论文
共 33 条
[1]   Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance [J].
Albrecht, C ;
Smet, JH ;
von Klitzing, K ;
Weiss, D ;
Umansky, V ;
Schweizer, H .
PHYSICAL REVIEW LETTERS, 2001, 86 (01) :147-150
[2]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/nnano.2010.8, 10.1038/NNANO.2010.8]
[3]   Extra Dirac points in the energy spectrum for superlattices on single-layer graphene [J].
Barbier, M. ;
Vasilopoulos, P. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2010, 81 (07)
[4]   Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers [J].
Britnell, Liam ;
Gorbachev, Roman V. ;
Jalil, Rashid ;
Belle, Branson D. ;
Schedin, Fred ;
Katsnelson, Mikhail I. ;
Eaves, Laurence ;
Morozov, Sergey V. ;
Mayorov, Alexander S. ;
Peres, Nuno M. R. ;
Castro Neto, Antonio H. ;
Leist, Jon ;
Geim, Andre K. ;
Ponomarenko, Leonid A. ;
Novoselov, Kostya S. .
NANO LETTERS, 2012, 12 (03) :1707-1710
[5]   MAGNETIC SUBBAND STRUCTURE OF ELECTRONS IN HEXAGONAL LATTICES [J].
CLARO, FH ;
WANNIER, GH .
PHYSICAL REVIEW B, 1979, 19 (12) :6068-6074
[6]   Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices [J].
Dean, C. R. ;
Wang, L. ;
Maher, P. ;
Forsythe, C. ;
Ghahari, F. ;
Gao, Y. ;
Katoch, J. ;
Ishigami, M. ;
Moon, P. ;
Koshino, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Shepard, K. L. ;
Hone, J. ;
Kim, P. .
NATURE, 2013, 497 (7451) :598-602
[7]  
Drienovsky M., 2017, PREPRINT
[8]   Towards superlattices: Lateral bipolar multibarriers in graphene [J].
Drienovsky, Martin ;
Schrettenbrunner, Franz-Xaver ;
Sandner, Andreas ;
Weiss, Dieter ;
Eroms, Jonathan ;
Liu, Ming-Hao ;
Tkatschenko, Fedor ;
Richter, Klaus .
PHYSICAL REVIEW B, 2014, 89 (11)
[9]   Tunable Superlattice in Graphene To Control the Number of Dirac Points [J].
Dubey, Sudipta ;
Singh, Vibhor ;
Bhat, Ajay K. ;
Parikh, Pritesh ;
Grover, Sameer ;
Sensarma, Rajdeep ;
Tripathi, Vikram ;
Sengupta, K. ;
Deshmukh, Mandar M. .
NANO LETTERS, 2013, 13 (09) :3990-3995
[10]   SUPERLATTICE AND NEGATIVE DIFFERENTIAL CONDUCTIVITY IN SEMICONDUCTORS [J].
ESAKI, L ;
TSU, R .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1970, 14 (01) :61-&