Conservative perturbation theory for nonconservative systems

被引:23
作者
Shah, Tirth [1 ]
Chattopadhyay, Rohitashwa [2 ]
Vaidya, Kedar [3 ]
Chakraborty, Sagar [2 ,4 ]
机构
[1] Indian Inst Technol, Dept Phys, Madras 600036, Tamil Nadu, India
[2] Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India
[3] Virginia Tech, Dept Biomed Engn & Mech, Blacksburg, VA 24061 USA
[4] Indian Inst Technol, Mech & Appl Math Grp, Kanpur 208016, Uttar Pradesh, India
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 06期
关键词
DAMPED HARMONIC-OSCILLATOR; QUANTUM; MECHANICS;
D O I
10.1103/PhysRevE.92.062927
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we show how to use canonical perturbation theory for dissipative dynamical systems capable of showing limit-cycle oscillations. Thus, our work surmounts the hitherto perceived barrier for canonical perturbation theory that it can be applied only to a class of conservative systems, viz., Hamiltonian systems. In the process, we also find Hamiltonian structure for an important subset of Lienard system-a paradigmatic system for modeling isolated and asymptotic oscillatory state. We discuss the possibility of extending our method to encompass an even wider range of nonconservative systems.
引用
收藏
页数:7
相关论文
共 29 条
[1]  
Andersson A., 1987, HDB REGIONAL URBAN E, V1, P201
[2]  
[Anonymous], OXFORD TEXTS APPL EN
[3]   On dissipative systems and related variational principles [J].
Bateman, H .
PHYSICAL REVIEW, 1931, 38 (04) :815-819
[4]   Observation of Asymmetric Transport in Structures with Active Nonlinearities [J].
Bender, N. ;
Factor, S. ;
Bodyfelt, J. D. ;
Ramezani, H. ;
Christodoulides, D. N. ;
Ellis, F. M. ;
Kottos, T. .
PHYSICAL REVIEW LETTERS, 2013, 110 (23)
[5]   Dynamics of elastic excitable media [J].
Cartwright, JHE ;
Eguíluz, VM ;
Hernández-García, E ;
Piro, O .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (11) :2197-2202
[6]   On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator [J].
Chandrasekar, V. K. ;
Senthilvelan, M. ;
Lakshmanan, M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (03)
[7]  
Chenciner A., 2007, Scholarpedia, V2, P2111, DOI DOI 10.4249/SCHOLARPEDIA.2111
[8]   Quantum damped oscillator I: Dissipation and resonances [J].
Chruscinski, D ;
Jurkowski, J .
ANNALS OF PHYSICS, 2006, 321 (04) :854-874
[9]   Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D parabolic potential barrier [J].
Chruscinski, D .
ANNALS OF PHYSICS, 2006, 321 (04) :840-853
[10]   CLASSICAL AND QUANTUM-MECHANICS OF THE DAMPED HARMONIC-OSCILLATOR [J].
DEKKER, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 80 (01) :1-112