Conservative perturbation theory for nonconservative systems

被引:23
作者
Shah, Tirth [1 ]
Chattopadhyay, Rohitashwa [2 ]
Vaidya, Kedar [3 ]
Chakraborty, Sagar [2 ,4 ]
机构
[1] Indian Inst Technol, Dept Phys, Madras 600036, Tamil Nadu, India
[2] Indian Inst Technol, Dept Phys, Kanpur 208016, Uttar Pradesh, India
[3] Virginia Tech, Dept Biomed Engn & Mech, Blacksburg, VA 24061 USA
[4] Indian Inst Technol, Mech & Appl Math Grp, Kanpur 208016, Uttar Pradesh, India
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 06期
关键词
DAMPED HARMONIC-OSCILLATOR; QUANTUM; MECHANICS;
D O I
10.1103/PhysRevE.92.062927
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we show how to use canonical perturbation theory for dissipative dynamical systems capable of showing limit-cycle oscillations. Thus, our work surmounts the hitherto perceived barrier for canonical perturbation theory that it can be applied only to a class of conservative systems, viz., Hamiltonian systems. In the process, we also find Hamiltonian structure for an important subset of Lienard system-a paradigmatic system for modeling isolated and asymptotic oscillatory state. We discuss the possibility of extending our method to encompass an even wider range of nonconservative systems.
引用
收藏
页数:7
相关论文
共 29 条
  • [1] Andersson A., 1987, HDB REGIONAL URBAN E, V1, P201
  • [2] [Anonymous], OXFORD TEXTS APPL EN
  • [3] On dissipative systems and related variational principles
    Bateman, H
    [J]. PHYSICAL REVIEW, 1931, 38 (04): : 815 - 819
  • [4] Observation of Asymmetric Transport in Structures with Active Nonlinearities
    Bender, N.
    Factor, S.
    Bodyfelt, J. D.
    Ramezani, H.
    Christodoulides, D. N.
    Ellis, F. M.
    Kottos, T.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (23)
  • [5] Dynamics of elastic excitable media
    Cartwright, JHE
    Eguíluz, VM
    Hernández-García, E
    Piro, O
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (11): : 2197 - 2202
  • [6] On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator
    Chandrasekar, V. K.
    Senthilvelan, M.
    Lakshmanan, M.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (03)
  • [7] Chenciner A., 2007, Scholarpedia, V2, P2111, DOI DOI 10.4249/SCHOLARPEDIA.2111
  • [8] Quantum damped oscillator I: Dissipation and resonances
    Chruscinski, D
    Jurkowski, J
    [J]. ANNALS OF PHYSICS, 2006, 321 (04) : 854 - 874
  • [9] Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D parabolic potential barrier
    Chruscinski, D
    [J]. ANNALS OF PHYSICS, 2006, 321 (04) : 840 - 853
  • [10] CLASSICAL AND QUANTUM-MECHANICS OF THE DAMPED HARMONIC-OSCILLATOR
    DEKKER, H
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 80 (01): : 1 - 112