Deriving a Ranking From Hesitant Fuzzy Preference Relations Under Group Decision Making

被引:176
作者
Zhu, Bin [1 ]
Xu, Zeshui [2 ,3 ]
Xu, Jiuping [2 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing 211189, Jiangsu, Peoples R China
[2] Sichuan Univ, Uncertainty Decis Making Lab, Chengdu 610065, Peoples R China
[3] PLA Univ Sci & Technol, Coll Sci, Nanjing 210007, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Consistency measure; group decision making (GDM); hesitant fuzzy preference relation (HFPR); hesitant fuzzy set (HFS); BONFERRONI MEANS; SCALING METHOD; CONSISTENCY; MODEL; INFORMATION; SETS; PRIORITIES;
D O I
10.1109/TCYB.2013.2283021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we explore the ranking methods with hesitant fuzzy preference relations (HFPRs) in the group decision making environments. As basic elements of hesitant fuzzy sets, hesitant fuzzy elements (HFEs) usually have different numbers of possible values. In order to compute or compare HFEs, we have two principles to normalize them, i. e., the alpha-normalization and the alpha-normalization. Based on the a-normalization, we develop a new hesitant goal programming model to derive priorities from HFPRs. On the basis of the beta-normalization, we develop the consistency measures of HFPRs, establish the consistency thresholds to measure whether or not an HFPR is of acceptable consistency, and then use the hesitant aggregation operators to aggregate preferences in HFPRs to obtain the ranking results.
引用
收藏
页码:1328 / 1337
页数:10
相关论文
共 31 条
[11]   A consensus support system model for group decision-making problems with multigranular linguistic preference relations [J].
Herrera-Viedma, E ;
Martínez, L ;
Mata, F ;
Chiclana, F .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (05) :644-658
[12]   Some issues on consistency of fuzzy preference relations [J].
Herrera-Viedma, E ;
Herrera, F ;
Chiclana, F ;
Luque, M .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 154 (01) :98-109
[13]   A consensus model for multiperson decision making with different preference structures [J].
Herrera-Viedma, E ;
Herrera, F ;
Chiclana, F .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2002, 32 (03) :394-402
[14]   Group decision-making model with incomplete fuzzy preference relations based on additive consistency [J].
Herrera-Viedma, Enrique ;
Chiclana, Francisco ;
Herrera, Francisco ;
Alonso, Sergio .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (01) :176-189
[15]  
Orlovsky S. A., 1978, Fuzzy Sets and Systems, V1, P155, DOI 10.1016/0165-0114(78)90001-5
[16]   Hesitant Fuzzy Linguistic Term Sets for Decision Making [J].
Rodriguez, Rosa M. ;
Martinez, Luis ;
Herrera, Francisco .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (01) :109-119
[17]   SCALING METHOD FOR PRIORITIES IN HIERARCHICAL STRUCTURES [J].
SAATY, TL .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1977, 15 (03) :234-281
[18]  
Saaty TL., 1980, ANAL HIERARCHY PROCE
[19]   Learning of Fuzzy Cognitive Maps Using Density Estimate [J].
Stach, Wojciech ;
Pedrycz, Witold ;
Kurgan, Lukasz A. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (03) :900-912
[20]   FUZZY PREFERENCE ORDERINGS IN GROUP DECISION-MAKING [J].
TANINO, T .
FUZZY SETS AND SYSTEMS, 1984, 12 (02) :117-131