Alternatives for Doping in Nanoscale Field-Effect Transistors

被引:9
作者
Riederer, Felix [1 ,2 ]
Grap, Thomas [1 ,2 ]
Fischer, Sergej [1 ,2 ]
Mueller, Marcel R. [1 ,3 ]
Yamaoka, Daichi [1 ,2 ]
Sun, Bin [1 ,2 ]
Gupta, Charu [1 ]
Kallis, Klaus T. [3 ]
Knoch, Joachim [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, Inst Semicond Elect, D-52056 Aachen, Germany
[2] Juelich Aachen Res Alliance JARA FIT, Aachen, Germany
[3] TU Dortmund Univ, Intelligent Microsyst Chair, D-44227 Dortmund, Germany
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2018年 / 215卷 / 07期
关键词
doping; electrostatic doping; interface engineering; multi-gates; DOPANT SEGREGATION; GATE; SOI; PERFORMANCE; IMPACT; BODY; TRANSITION; TRANSPORT; BULK; FETS;
D O I
10.1002/pssa.201700969
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present article, alternatives to impurity doping in nanoscale field-effect transistors (FETs) are investigated. The discussion is based on conventional and tunnel FETs. The impact of dopant deactivation due to dielectric mismatch or quantization, random dopant effects, and the degeneracy level on the performance is discussed. As alternatives metal-semiconductor-contacts, gate-controlled doping and an interface engineering approach are studied. One of the main requirements for proper device functionality is the existence of a band gap in the contacts. Thus, metal-semiconductor contacts are less suited since they lead to ambipolar operation with increased leakage and to a deteriorated on-state performance. With gate-controlled doping, electrodes areused to create doped regions leaving behind a pristine band gap. Moreover, it enables reconfigurable devices with nFET, pFET and tunnel FET operation. Furthermore, with multiple nanoscale gates, electrostatic doping allows manipulating the potential within the device on the nanoscale. Experimental demonstrations of such devices with triple-gates and multiple gate structures are presented. Finally, the interface engineering approach allows combining a metallic contact electrode with an almost unmodified band gap in the source/drain contacts by adjusting an ultrathin insulator in-between metal and semiconductor yielding quasi-doped contacts whose polarity depends on the work function of contact metal.
引用
收藏
页数:16
相关论文
共 77 条
[31]   Tunnel field-effect transistors as energy-efficient electronic switches [J].
Ionescu, Adrian M. ;
Riel, Heike .
NATURE, 2011, 479 (7373) :329-337
[32]   10-15 nm ultrashallow junction formation by flash-lamp annealing [J].
Ito, T ;
Iinuma, T ;
Murakoshi, A ;
Akutsu, H ;
Suguro, K ;
Arikado, T ;
Okumura, K ;
Yoshioka, M ;
Owada, T ;
Imaoka, Y ;
Murayama, H ;
Kusuda, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (4B) :2394-2398
[33]   Effects of band-tails on the subthreshold characteristics of nanowire band-to-band tunneling transistors [J].
Khayer, M. Abul ;
Lake, Roger K. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (07)
[34]  
Kinoshita A., 2004, S VLSI TECHN, V168
[35]   Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices [J].
Knoch, J. ;
Mantl, S. ;
Appenzeller, J. .
SOLID-STATE ELECTRONICS, 2007, 51 (04) :572-578
[36]   Impact of the channel thickness on the performance of Schottky barrier metal-oxide-semiconductor field-effect transistors [J].
Knoch, J ;
Appenzeller, J .
APPLIED PHYSICS LETTERS, 2002, 81 (16) :3082-3084
[37]   Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors [J].
Knoch, J. ;
Zhang, M. ;
Appenzeller, J. ;
Mantl, S. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 87 (03) :351-357
[38]   Effective Schottky barrier lowering in silicon-on-insulator Schottky-barrier metal-oxide-semiconductor field-effect transistors using dopant segregation [J].
Knoch, J ;
Zhang, M ;
Zhao, QT ;
Lenk, S ;
Mantl, S ;
Appenzeller, J .
APPLIED PHYSICS LETTERS, 2005, 87 (26) :1-3
[39]   Electrostatic Doping-Controlling the Properties of Carbon-Based FETs With Gates [J].
Knoch, J. ;
Mueller, M. R. .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (06) :1044-1052
[40]  
Knoch J., 2012, NANOELECTRONICS AND