Nanofluid flow and forced convection heat transfer over a stretching surface considering heat source

被引:2
|
作者
Mohammadpour, M. [1 ]
Valipour, P. [2 ]
Shambooli, M. [1 ]
Ayani, M. [3 ]
Mirparizi, M. [4 ]
机构
[1] Babol Univ Technol, Dept Mech Engn, Babol Sar, Iran
[2] Islamic Azad Univ, Dept Text & Apparel, Qaemshahr Branch, Qaemshahr, Iran
[3] Khaje Nasir Toosi Univ Technol, Dept Mech Engn, Tehran, Iran
[4] Univ Yazd, Dept Mech Engn, Yazd, Iran
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2015年 / 130卷 / 07期
关键词
NATURAL-CONVECTION; THERMAL-CONDUCTIVITY; MHD FLOW; SIMULATION; RADIATION; ENCLOSURE; ANNULUS; MODEL;
D O I
10.1140/epjp/i2015-15155-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, magnetic field effects on the forced convection flow of a nanofluid over a stretching surface in the presence of heat generation/absorption are studied. The equations of continuity, momentum and energy are transformed into ordinary differential equations and solved numerically using the fourth-order Runge-Kutta integration scheme featuring the shooting technique. Different types of nanoparticles as copper (Cu), silver (Ag), alumina (Al2O3) and titania (TiO2) with water as their base fluid has been considered. The influence of significant parameters, such as magnetic parameter, volume fraction of the nanoparticles, heat generation/absorption parameter, velocity ratio parameter and temperature index parameter on the flow and heat transfer characteristics are discussed. The results show that the values of temperature profiles increase with increasing heat generation/absorption and volume fraction of the nanoparticles but they decrease with increasing velocity ratio parameter and temperature index parameter. Also, it can be found that selecting silver as nanoparticle leads to the highest heat transfer enhancement.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Convective heat and mass transfer in MHD mixed convection flow of Jeffrey nanofluid over a radially stretching surface with thermal radiation
    Ashraf, M. Bilal
    Hayat, T.
    Alsaedi, A.
    Shehzad, S. A.
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2015, 22 (03) : 1114 - 1123
  • [12] NANOFLUID PROPERTIES FOR FORCED CONVECTION HEAT TRANSFER: AN OVERVIEW
    Azmi, W. H.
    Sharma, K. V.
    Mamat, Rizalman
    Anuar, Shahrani
    JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES, 2013, 4 : 397 - 408
  • [13] Heat transfer analysis of MHD Casson nanofluid flow over a nonlinear stretching sheet in the presence of nonuniform heat source
    Triveni, Battena
    Rao, Munagala Venkata Subba
    Gangadhar, Kotha
    Chamkha, Ali J.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024, 85 (13) : 2145 - 2164
  • [14] Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface
    Li, Yi-Xia
    Alshbool, Mohammed Hamed
    Lv, Yu-Pei
    Khan, Ilyas
    Khan, M. Riaz
    Issakhov, Alibek
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 26
  • [15] Heat transfer and nanofluid flow of free convection in a quarter cylinder channel considering nanoparticle shape effect
    Shi, Xiaolong
    Jaryani, Pouriya
    Amiri, Ali
    Rahimi, Alireza
    Malekshah, Emad Hasani
    POWDER TECHNOLOGY, 2019, 346 : 160 - 170
  • [16] Enhancing heat transfer on the free convection of conducting hybrid nanofluid through stretching/shrinking surface
    Sharma, Ram Prakash
    Pattnaik, P. K.
    Mishra, S. R.
    Tinker, Seema
    Allipudi, Subba Rao
    PRAMANA-JOURNAL OF PHYSICS, 2024, 98 (03):
  • [17] Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet
    Dalir, Nemat
    Dehsara, Mohammad
    Nourazar, S. Salman
    ENERGY, 2015, 79 : 351 - 362
  • [18] Numerical heat transfer of non-similar ternary hybrid nanofluid flow over linearly stretching surface
    Riaz, Saman
    Afzaal, Muhammad F.
    Wang, Zhan
    Jan, Ahmed
    Farooq, Umer
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2023, : 4021 - 4035
  • [19] MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid
    Aly, Emad H.
    Pop, I
    POWDER TECHNOLOGY, 2020, 367 : 192 - 205
  • [20] Mixed Convection Magnetohydrodynamics Flow of a Nanofluid with Heat Transfer: A Numerical Study
    Khan, Abdul Quayam
    Rasheed, Amer
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019