Investigation of nanoparticle distribution formed by the rotation of the magnetic system

被引:9
作者
Karpov, Andrej [1 ]
Kozireva, Svetlana [1 ]
Avotina, Dace [1 ]
Chernobayeva, Lidija [1 ]
Baryshev, Mikhail [1 ]
机构
[1] Riga Stradins Univ, August Kirchenstein Inst Microbiol & Virol, LV-1067 Riga, Latvia
关键词
Magnet array; Magnetic field; Patterning; Magnetofection; SPION; ENHANCEMENT; EFFICIENCY; DELIVERY; CELLS; FIELD;
D O I
10.1016/j.jmmm.2014.05.055
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An even dispersion of nanoparticles onto a cell monolayer may open up new options for the gene transfer into cells and this could be a valuable achievement in the field of nanotechnology based drug delivery. Here we report on our evaluation of superparamagnetic iron oxide nanoparticle (SPION) patterning formed by magnetic arrays with unipolar NdFeB magnet arrangements and describe a rotating magnetic array as well as underlying mechanisms of the nanoparticle pattern formation. SPION pattern derived from static magnetic array represents line-like pattern, while the pattern formed by orbital magnetic array is homogenously distributed nanoparticles. Our results show that the SPION sedimentation under the time-phase varying action of magnetic field occurs with horizontal motion of nanoparticles and forms a homogenous distribution of them on the target. In the process, the amplitude of nanoparticle displacement reaches up to 0.5 mu m at the magnet boundary, at the greatest linear speed tested of 60 mm/s (magnetic field gradient: 50 T/m). Application of the orbital magnetic array increases the probability of nanoparticle-cell interactions and enhances the efficiency of the gene delivery. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 91
页数:6
相关论文
共 15 条
[1]  
Alexiou C., 2007, MAGNETISM MED HDB, P596
[2]  
Baryshev M., 2011, WASET, V58, P249
[3]   Rotational magnetic pulses enhance the magnetofection efficiency in vitro in adherent and suspension cells [J].
Dahmani, Ch. ;
Mykhaylyk, O. ;
Helling, Fl. ;
Goetz, St. ;
Weyh, Th. ;
Herzog, H. -G. ;
Plank, Ch. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 332 :163-171
[4]   Nanoscale magnetic biotransport with application to magnetofection [J].
Furlani, E. P. ;
Ng, K. C. .
PHYSICAL REVIEW E, 2008, 77 (06)
[5]   Selective activation of mechanosensitive ion channels using magnetic particles [J].
Hughes, Steven ;
McBain, Stuart ;
Dobson, Jon ;
El Haj, Alicia J. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2008, 5 (25) :855-863
[6]   Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field [J].
Kamau, SW ;
Hassa, PO ;
Steitz, B ;
Petri-Fink, A ;
Hofmann, H ;
Hofmann-Amtenbrink, M ;
von Rechenberg, B ;
Hottiger, MO .
NUCLEIC ACIDS RESEARCH, 2006, 34 (05)
[7]  
MacDonald C, 2010, NANOMEDICINE-UK, V5, P65, DOI [10.2217/nnm.09.97, 10.2217/NNM.09.97]
[8]   Nanomagnetic actuation of receptor-mediated signal transduction [J].
Mannix, Robert J. ;
Kumar, Sanjay ;
Cassiola, Flavia ;
Montoya-Zavala, Martin ;
Feinstein, Efraim ;
Prentiss, Mara ;
Ingber, Donald E. .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :36-40
[9]   Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays [J].
McBain, S. C. ;
Griesenbach, U. ;
Xenariou, S. ;
Keramane, A. ;
Batich, C. D. ;
Alton, E. W. F. W. ;
Dobson, J. .
NANOTECHNOLOGY, 2008, 19 (40)
[10]   Enhancement of magnetic nanoparticle-mediated gene transfer to astrocytes by 'magnetofection': effects of static and oscillating fields [J].
Pickard, Mark ;
Chari, Divya .
NANOMEDICINE, 2010, 5 (02) :217-232