In this paper, an efficient finite difference scheme is developed for solving the time-fractional Cahn-Hilliard equations which is the well-known representative of phase-field models. The time Caputo derivative is approximated by the popular L-1 formula. The stability and convergence of the finite difference scheme in the discrete L-2-norm are proved by the discrete energy method. To compare and observe the phenomenon of solution, a generalized difference scheme based on the graded mesh in time is also given. The dynamics of the solution and accuracy of the schemes are verified numerically. Numerical experiments show that the solution of the time-fractional Cahn-Hilliard equation always tends to be in an equilibrium state with the increase of time for different values of order alpha is an element of (0,1), which is consistent with the phase separation phenomenon. (C) 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Bellettini, Giovanni
Bertini, Lorenzo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Bertini, Lorenzo
Mariani, Mauro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Aix Marseille, Lab Anal, Topol Probabil UMR 6632, CNRS, F-13397 Marseille 20, FranceUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Mariani, Mauro
Novaga, Matteo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Padua, Dipartimento Matemat, I-35121 Padua, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Quanzhou Normal Univ, Dept Math, Quanzhou 362000, Peoples R ChinaQueensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
Chen, S.
Liu, F.
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R ChinaQueensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
Liu, F.
Zhuang, P.
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R ChinaQueensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
Zhuang, P.
Anh, V.
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaQueensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Bellettini, Giovanni
Bertini, Lorenzo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Bertini, Lorenzo
Mariani, Mauro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Aix Marseille, Lab Anal, Topol Probabil UMR 6632, CNRS, F-13397 Marseille 20, FranceUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
Mariani, Mauro
Novaga, Matteo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Padua, Dipartimento Matemat, I-35121 Padua, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Quanzhou Normal Univ, Dept Math, Quanzhou 362000, Peoples R ChinaQueensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
Chen, S.
Liu, F.
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R ChinaQueensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
Liu, F.
Zhuang, P.
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R ChinaQueensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
Zhuang, P.
Anh, V.
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, AustraliaQueensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia