Positive Lyapunov Exponents for Higher Dimensional Quasiperiodic Cocycles

被引:18
作者
Duarte, Pedro [1 ,2 ]
Klein, Silvius [2 ,3 ]
机构
[1] Univ Lisbon, Fac Ciencias, Dept Matemat, Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, CMAF, Lisbon, Portugal
[3] IMAR, Bucharest, Romania
关键词
SCHRODINGER-OPERATORS;
D O I
10.1007/s00220-014-2082-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an m-dimensional analytic cocycle , where and . Assuming that the d x d upper left corner block of A is typically large enough, we prove that the d largest Lyapunov exponents associated with this cocycle are bounded away from zero. The result is uniform relative to certain measurements on the matrix blocks forming the cocycle. As an application of this result, we obtain nonperturbative (in the spirit of Sorets-Spencer theorem) positive lower bounds of the nonnegative Lyapunov exponents for various models of band lattice Schrodinger operators.
引用
收藏
页码:189 / 219
页数:31
相关论文
共 13 条
[1]  
Bourgain J, 2005, Annals of Mathematics Studies, V158
[2]  
Bourgain J., 2000, Lect. Notes Math, V1745, P67
[3]  
BRUNS W, 1988, LECT NOTES MATH, V1327, P1
[4]   Method of variations of potential of quasi-periodic Schrodinger equations [J].
Chan, Jackson .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (05) :1416-1478
[5]  
Duren P.L., 1970, Pure and Applied Mathematics, V38, P74
[6]  
Federer Herbert, 1969, GEOMETRIC MEASURE TH
[7]   LYAPUNOV EXPONENTS OF THE SCHRODINGER-EQUATION WITH QUASI-PERIODIC POTENTIAL ON A STRIP [J].
GOLDSHEID, IY ;
SORETS, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (03) :507-513
[9]   PREVALENCE - A TRANSLATION-INVARIANT ALMOST EVERY ON INFINITE-DIMENSIONAL SPACES [J].
HUNT, BR ;
SAUER, T ;
YORKE, JA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (02) :217-238
[10]   STOCHASTIC SCHRODINGER-OPERATORS AND JACOBI MATRICES ON THE STRIP [J].
KOTANI, S ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (03) :403-429