The changing ozone depletion potential of N2O in a future climate

被引:46
作者
Revell, L. E. [1 ,2 ]
Tummon, F. [1 ]
Salawitch, R. J. [3 ,4 ,5 ]
Stenke, A. [1 ]
Peter, T. [1 ]
机构
[1] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland
[2] Bodeker Sci, Alexandra, South Africa
[3] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
[5] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
关键词
NITROUS-OXIDE; ATMOSPHERIC CHEMISTRY; TROPOSPHERIC OZONE; MODEL; 21ST-CENTURY; PROJECTIONS; SUBSTANCES; EMISSIONS; IMPACT; GASES;
D O I
10.1002/2015GL065702
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Nitrous oxide (N2O), which decomposes in the stratosphere to form nitrogen oxides (NOx), is currently the dominant anthropogenic ozone-depleting substance emitted. Ozone depletion potentials (ODPs) of specific compounds, commonly evaluated for present-day conditions, were developed for long-lived halocarbons and are used by policymakers to inform decision-making around protection of the ozone layer. However, the effect of N2O on ozone will evolve in the future due to changes in stratospheric dynamics and chemistry induced by rising levels of greenhouse gases. Despite the fact that NOx-induced ozone loss slows with increasing concentrations of CO2 and CH4, we show that ODPN2O for year 2100 varies under different scenarios and is mostly larger than ODPN2O for year 2000. This occurs because the traditional ODP approach is tied to ozone depletion induced by CFC-11, which is also sensitive to CO2 and CH4. We therefore suggest that a single ODP for N2O is of limited use.
引用
收藏
页码:10047 / 10055
页数:9
相关论文
共 41 条
[1]  
[Anonymous], SCI ASS OZ DEPL 2010
[2]  
[Anonymous], 349 MAX PLANCK I MET
[3]   Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions [J].
Arfeuille, F. ;
Luo, B. P. ;
Heckendorn, P. ;
Weisenstein, D. ;
Sheng, J. X. ;
Rozanov, E. ;
Schraner, M. ;
Broennimann, S. ;
Thomason, L. W. ;
Peter, T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (22) :11221-11234
[4]   POSSIBILITY OF AN ARCTIC OZONE HOLE IN A DOUBLED-CO2 CLIMATE [J].
AUSTIN, J ;
BUTCHART, N ;
SHINE, KP .
NATURE, 1992, 360 (6401) :221-225
[5]   Multimodel estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future [J].
Chipperfield, M. P. ;
Liang, Q. ;
Strahan, S. E. ;
Morgenstern, O. ;
Dhomse, S. S. ;
Abraham, N. L. ;
Archibald, A. T. ;
Bekki, S. ;
Braesicke, P. ;
Di Genova, G. ;
Fleming, E. L. ;
Hardiman, S. C. ;
Iachetti, D. ;
Jackman, C. H. ;
Kinnison, D. E. ;
Marchand, M. ;
Pitari, G. ;
Pyle, J. A. ;
Rozanov, E. ;
Stenke, A. ;
Tummon, F. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (05) :2555-2573
[6]   Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? [J].
Crutzen, Paul J. .
CLIMATIC CHANGE, 2006, 77 (3-4) :211-219
[8]   Options to accelerate ozone recovery: ozone and climate benefits [J].
Daniel, J. S. ;
Fleming, E. L. ;
Portmann, R. W. ;
Velders, G. J. M. ;
Jackman, C. H. ;
Ravishankara, A. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (16) :7697-7707
[9]  
ETH-PMOD (Swiss Federal Institute of Technology Zurich and the Physical-Meteorology Observatory Davos) Data, 2015, PART CHEM CLIM MOD I
[10]   Long-term ozone changes and associated climate impacts in CMIP5 simulations [J].
Eyring, V. ;
Arblaster, J. M. ;
Cionni, I. ;
Sedlacek, J. ;
Perliwitz, J. ;
Young, P. J. ;
Bekki, S. ;
Bergmann, D. ;
Cameron-Smith, P. ;
Collins, W. J. ;
Faluvegi, G. ;
Gottschaldt, K. D. ;
Horowitz, L. W. ;
Kinnison, D. E. ;
Lamarque, J. F. ;
Marsh, D. R. ;
Saint-Martin, D. ;
Shindell, D. T. ;
Sudo, K. ;
Szopa, S. ;
Watanabe, S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (10) :5029-5060