A machine learning approach for predicting urine output after fluid administration

被引:19
作者
Lin, Pei-Chen [1 ,2 ]
Huang, Hsu-Cheng [3 ,4 ,5 ]
Komorowski, Matthieu [6 ,7 ,8 ]
Lin, Wei-Kai [9 ]
Chang, Chun-Min [9 ]
Chen, Kuan-Ta [9 ]
Li , Yu-Chuan [10 ,11 ]
Lin, Ming-Chin [1 ,12 ,13 ]
机构
[1] Taipei Med Univ, Coll Med Sci & Technol, Grad Inst Biomed Informat, Taipei, Taiwan
[2] Minist Hlth & Welf, Emergency Dept, Taoyuan Gen Hosp, Taoyuan, Taiwan
[3] Natl Taiwan Univ Hosp, Dept Med Imaging, Taipei, Taiwan
[4] Natl Taiwan Univ, Coll Med, Taipei, Taiwan
[5] Taipei City Hosp, Yangming Branch, Dept Radiol, Taipei, Taiwan
[6] Imperial Coll London, Dept Surg & Canc, London, England
[7] Imperial Coll London, Dept Bioengn, London, England
[8] Harvard MIT Div Hlth Sci & Technol, Lab Computat Physiol, Cambridge, MA USA
[9] Acad Sinica, Inst Informat Sci, Taipei, Taiwan
[10] Taipei Med Univ, Int Ctr Hlth Informat Technol, Taipei, Taiwan
[11] Wan Fang Hosp, Dept Dermatol, Taipei, Taiwan
[12] Taipei Med Univ, Shuang Ho Hosp, Dept Neurosurg, New Taipei, Taiwan
[13] Taipei Med Univ, Taipei Neurosci Inst, Taipei, Taiwan
基金
英国工程与自然科学研究理事会;
关键词
Sepsis; Prediction; Machine learning; Electronic health records; Clinical decision support; Fluid resuscitation; HOSPITAL MORTALITY; SEPTIC SHOCK; RESPONSIVENESS; SEPSIS; OLIGURIA;
D O I
10.1016/j.cmpb.2019.05.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: To develop a machine learning model to predict urine output (UO) in sepsis patients after fluid resuscitation. Methods: We identified sepsis patients in the Multiparameter Intelligent Monitoring in Intensive Care-III v1.4 database according to the Sepsis-3 criteria. We focused on two outcomes: whether the UO decreased after fluid administration and whether oliguria (defined as UO less than the threshold of 0.5 mL/kg/h) developed. A gradient tree-based machine learning model implemented with an eXtreme Gradient Boosting algorithm was used to integrate relevant physiological parameters for predicting the aforementioned outcomes. A confusion matrix was computed. Results: A total of 232,929 events in 19,275 patients were included. Using decreased UO as the outcome measure, the optimal model achieved an area under the curve (AUC) of 0.86; for predicting oliguria, most models achieved an AUC greater than 0.86, and the highest sensitivity was 92.2% when the model was applied to patients with baseline oliguria. Conclusions: Machine learning could help clinicians evaluate fluid status in sepsis patients after fluid administration, thus preventing fluid overload-related complications. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:155 / 159
页数:5
相关论文
共 23 条
[1]  
[Anonymous], 2016, arXiv
[2]   Will This Hemodynamically Unstable Patient Respond to a Bolus of Intravenous Fluids? [J].
Bentzer, Peter ;
Griesdale, Donald E. ;
Boyd, John ;
MacLean, Kelly ;
Sirounis, Demetrios ;
Ayas, Najib T. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (12) :1298-1309
[3]   Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury [J].
Bouchard, Josee ;
Soroko, Sharon B. ;
Chertow, Glenn M. ;
Himmelfarb, Jonathan ;
Ikizler, T. Alp ;
Paganini, Emil P. ;
Mehta, Ravindra L. .
KIDNEY INTERNATIONAL, 2009, 76 (04) :422-427
[4]   Foreword [J].
Eckardt, Kai-Uwe ;
Kasiske, Bertram L. .
KIDNEY INTERNATIONAL SUPPLEMENTS, 2012, 2 (01) :7-7
[5]   Assessment of Global Incidence and Mortality of Hospital-treated Sepsis [J].
Fleischmann, Carolin ;
Scherag, Andre ;
Adhikari, Neill K. J. ;
Hartog, Christiane S. ;
Tsaganos, Thomas ;
Schlattmann, Peter ;
Angus, Derek C. ;
Reinhart, Konrad .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2016, 193 (03) :259-272
[6]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[7]   MIMIC-III, a freely accessible critical care database [J].
Johnson, Alistair E. W. ;
Pollard, Tom J. ;
Shen, Lu ;
Lehman, Li-wei H. ;
Feng, Mengling ;
Ghassemi, Mohammad ;
Moody, Benjamin ;
Szolovits, Peter ;
Celi, Leo Anthony ;
Mark, Roger G. .
SCIENTIFIC DATA, 2016, 3
[8]   Exploring the best predictors of fluid responsiveness in patients with septic shock [J].
Lu, Nianfang ;
Xi, Xiuming ;
Jiang, Li ;
Yang, Degang ;
Yin, Kai .
AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2017, 35 (09) :1258-1261
[9]   Oliguria is an early predictor of higher mortality in critically ill patients [J].
Macedo, Etienne ;
Malhotra, Rakesh ;
Bouchard, Josee ;
Wynn, Susan K. ;
Mehta, Ravindra L. .
KIDNEY INTERNATIONAL, 2011, 80 (07) :760-767
[10]   Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure [J].
Michard, F ;
Boussat, S ;
Chemla, D ;
Anguel, N ;
Mercat, A ;
Lecarpentier, Y ;
Richard, C ;
Pinsky, MR ;
Teboul, JL .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2000, 162 (01) :134-138