The microfluidic post-array device: high throughput production of single emulsion drops

被引:37
作者
Amstad, E. [1 ]
Datta, S. S. [2 ]
Weitz, D. A. [1 ,2 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
MEMBRANE; DROPLETS;
D O I
10.1039/c3lc51213d
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present a microfluidic device that enables high throughput production of relatively monodisperse emulsion drops while controlling the average size. The device consists of a two-dimensional array of regularly-spaced posts. Large drops of a highly polydisperse crude emulsion are input into the device and are successively split by the posts, ultimately yielding a finer emulsion consisting of smaller, and much more monodisperse drops. The size distribution of the resultant emulsion depends only weakly on the viscosities of the input fluids and allows fluids of very high viscosities to be used. The average size and polydispersity of the drops depend strongly on the device geometry enabling both control and optimization. We use this device to produce drops of a highly viscous monomer solution and subsequently solidify them into polymeric microparticles. The production rate of these devices is similar to that achieved by membrane emulsification techniques, yet the control over the drop size is superior; thus these post-array microfluidic devices are potentially useful for industrial applications.
引用
收藏
页码:705 / 709
页数:5
相关论文
共 12 条
[1]   Impact of inlet channel geometry on microfluidic drop formation [J].
Abate, A. R. ;
Poitzsch, A. ;
Hwang, Y. ;
Lee, J. ;
Czerwinska, J. ;
Weitz, D. A. .
PHYSICAL REVIEW E, 2009, 80 (02)
[2]   Synthesis of Monodisperse Microparticles from Non-Newtonian Polymer Solutions with Microfluidic Devices [J].
Abate, Adam R. ;
Kutsovsky, Mikhail ;
Seiffert, Sebastian ;
Windbergs, Maike ;
Pinto, Luis F. V. ;
Rotem, Assaf ;
Utada, Andrew S. ;
Weitz, David A. .
ADVANCED MATERIALS, 2011, 23 (15) :1757-+
[3]   Production of Porous Silica Microparticles by Membrane Emulsification [J].
Dragosavac, Marijana M. ;
Vladisavljevic, Goran T. ;
Holdich, Richard G. ;
Stillwell, Michael T. .
LANGMUIR, 2012, 28 (01) :134-143
[4]  
Garstecki P, 2006, LAB CHIP, V6, P693
[5]   Large-scale droplet production in microfluidic devices-an industrial perspective [J].
Holtze, Christian .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (11)
[6]   Geometrically mediated breakup of drops in microfluidic devices [J].
Link, DR ;
Anna, SL ;
Weitz, DA ;
Stone, HA .
PHYSICAL REVIEW LETTERS, 2004, 92 (05) :4-545034
[7]   Understanding foods as soft materials [J].
Mezzenga, R ;
Schurtenberger, P ;
Burbidge, A ;
Michel, M .
NATURE MATERIALS, 2005, 4 (10) :729-740
[8]   Scale-up and control of droplet production in coupled microfluidic flow-focusing geometries [J].
Mulligan, Molly K. ;
Rothstein, Jonathan P. .
MICROFLUIDICS AND NANOFLUIDICS, 2012, 13 (01) :65-73
[9]   Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations [J].
Protiere, S. ;
Bazant, M. Z. ;
Weitz, D. A. ;
Stone, H. A. .
EPL, 2010, 92 (05)
[10]   Dripping, jetting, drops, and wetting: The magic of microfluidics [J].
Utada, A. S. ;
Chu, L.-Y. ;
Fernandez-Nieves, A. ;
Link, D. R. ;
Holtze, C. ;
Weitz, D. A. .
MRS BULLETIN, 2007, 32 (09) :702-708