IMU-RGBD Camera 3D Pose Estimation and Extrinsic Calibration: Observability Analysis and Consistency Improvement

被引:0
|
作者
Guo, Chao X. [1 ]
Roumeliotis, Stergios I. [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
来源
2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2013年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we address the problem of extrinsically calibrating an inertial measurement unit (IMU) with respect to an RGBD sensor. In particular, we study the observability of the nonlinear IMU-RGBD calibration system and prove that the calibration parameters are observable given observations to a single point feature. Moreover, we show that the system has four unobservable directions corresponding to the global translation and rotations about the gravity vector. Based on the results of the observability analysis, we design a consistency-improved, observability constrained (OC) extended Kalman filter (EKF)-based estimator for calibrating the sensor pair while at the same time tracking its pose and creating a 3D map of the environment. Finally, we validate the key findings of the observability analysis and assess the performance of the OC-EKF estimator both in simulation and experimentally.
引用
收藏
页码:2935 / 2942
页数:8
相关论文
共 50 条
  • [1] Research on 3D Human Pose Estimation Using RGBD Camera
    Tang, Hui
    Wang, Qing
    Chen, Hong
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 538 - 541
  • [2] Camera-IMU-based localization: Observability analysis and consistency improvement
    Hesch, Joel A.
    Kottas, Dimitrios G.
    Bowman, Sean L.
    Roumeliotis, Stergios I.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (01): : 182 - 201
  • [3] Distributed RGBD Camera Network for 3D Human Pose Estimation and Action Recognition
    Li, Junwei
    Liu, Guoliang
    Tian, Guohui
    Zhu, Xianglai
    Wang, Ziren
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1554 - 1558
  • [4] Pose Guided RGBD Feature Learning for 3D Object Pose Estimation
    Balntas, Vassileios
    Doumanoglou, Andreas
    Sahin, Caner
    Sock, Juil
    Kouskouridas, Rigas
    Kim, Tae-Kyun
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 3876 - 3884
  • [5] Efficient 3D human pose estimation from RGBD sensors
    Pascual-Hernandez, David
    de Frutos, Nuria Oyaga
    Mora-Jimenez, Inmaculada
    Canas-Plaza, Jose Maria
    DISPLAYS, 2022, 74
  • [6] Extrinsic Calibration of an RGB Camera to a 3D Imaging Sonar
    Marburg, Aaron
    Stewart, Andy
    OCEANS 2015 - MTS/IEEE WASHINGTON, 2015,
  • [7] Extrinsic calibration of a 3D LIDAR and a camera using a trihedron
    Gong, Xiaojin
    Lin, Ying
    Liu, Jilin
    OPTICS AND LASERS IN ENGINEERING, 2013, 51 (04) : 394 - 401
  • [8] Extrinsic Calibration of Camera and 3D Laser Sensor System
    Sui, Jingfeng
    Wang, Shuo
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 6881 - 6886
  • [9] Joint Camera Pose Estimation and 3D Human Pose Estimation in a Multi-camera Setup
    Puwein, Jens
    Ballan, Luca
    Ziegler, Remo
    Pollefeys, Marc
    COMPUTER VISION - ACCV 2014, PT II, 2015, 9004 : 473 - 487
  • [10] Camera Pose Estimation with Semantic 3D Model
    Gaudilliere, Vincent
    Simon, Gilles
    Berger, Marie-Odile
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 4569 - 4576