Main and interaction effects of PEM fuel cell design parameters

被引:13
作者
Guvelioglu, Galip H. [1 ]
Stenger, Harvey G. [1 ]
机构
[1] Lehigh Univ, Dept Chem Engn, Bethlehem, PA 18015 USA
关键词
PEM fuel cell; design of experiments; factorial design; interaction; fuel cell design;
D O I
10.1016/j.jpowsour.2005.06.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a two-dimensional model is used to analyze the main and interaction effects of five design factors, at three levels in a polymer electrolyte membrane (PEM) fuel cell. The model used in this study is a detailed two-dimensional steady-state model, solved using a finite element partial differential equation solver. The factors considered are channel width, shoulder width, gas distribution electrode (GDE) thickness, GDE conductivity and GDE porosity. A full factorial design is used to minimize statistical errors and study interactions accurately. The model used is a two-dimensional, across-the-channel model. The model is run at both the inlet and exit concentrations for fuel and oxidant, allowing the study of interaction effects over a range of operating conditions. The analysis is conducted for operating potentials of 0.7 and 0.6 V and a range of current densities. The strongest interaction effects are found to exist between channel size and GDE conductivity, while the weakest interaction effects are between GDE thickness and GDE porosity. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:424 / 433
页数:10
相关论文
共 18 条
[1]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[2]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[3]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J].
Berning, T ;
Lu, DM ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :284-294
[4]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[5]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell - a parametric study [J].
Berning, T ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2003, 124 (02) :440-452
[6]   WATER AND THERMAL MANAGEMENT IN SOLID-POLYMER-ELECTROLYTE FUEL-CELLS [J].
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (05) :1218-1225
[7]   Two-dimensional model for proton exchange membrane fuel cells [J].
Gurau, V ;
Liu, HT ;
Kakac, S .
AICHE JOURNAL, 1998, 44 (11) :2410-2422
[8]   Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells [J].
Guvelioglu, GH ;
Stenger, HG .
JOURNAL OF POWER SOURCES, 2005, 147 (1-2) :95-106
[9]  
*MATH WORKS INC, 2004, MATLAB 7 0
[10]   Review and analysis of PEM fuel cell design and manufacturing [J].
Mehta, V ;
Cooper, JS .
JOURNAL OF POWER SOURCES, 2003, 114 (01) :32-53