Ion kinetics and nonlinear saturation of current-driven instabilities relevant to hollow cathode plasmas

被引:29
作者
Hara, Kentaro [1 ]
Treece, Cameron [1 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
关键词
current-driven instability; anomalous electron transport; erosion; hollow cathode; ion acoustic wave; Hall effect thrusters; Vlasov simulation; ACOUSTIC RESISTIVITY; SIMULATION; MODEL; DEPENDENCE; TURBULENCE; WEAR;
D O I
10.1088/1361-6595/ab18e4
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Ion kinetics and time evolution of bulk plasma properties in the nonlinear saturation regime of a collisionless current-driven instability are studied using a 1D Vlasov-Poisson simulation. In the simulations, the ratio of initial electron bulk velocity to initial electron thermal velocity, called the electron Mach number, ranges from 0.5 to 2.5, and electron-to-ion temperature ratio is 10. A significant population of backstreaming high-energy ions is observed when the initial electron Mach number is larger than or equal to 1.3, which agrees with previous literature indicating transition to the Buneman instability. The simulations suggest that the electrons trapped in large-amplitude waves result in a bi-directional ion acoustic wave, which generates a backward-propagating high-energy ion distribution. A concise formula that describes the high-energy ion distribution and potential fluctuation amplitude are obtained as a function of initial electron Mach numbers. Sputtering rate calculations using the non-Maxwellian distributions for ions obtained from the simulation and Maxwellian ion distributions of temperatures ranging from 0.5 to 4.0 eV are compared, illustrating the potential contribution of kinetic effects on cathode erosion.
引用
收藏
页数:12
相关论文
共 61 条
[1]   Wall material effects in stationary plasma thrusters. II. Near-wall and in-wall conductivity [J].
Barral, S ;
Makowski, K ;
Peradzynski, Z ;
Gascon, N ;
Dudeck, M .
PHYSICS OF PLASMAS, 2003, 10 (10) :4137-4152
[2]   Electron and ion kinetic effects on non-linearly driven electron plasma and ion acoustic waves [J].
Berger, R. L. ;
Brunner, S. ;
Chapman, T. ;
Divol, L. ;
Still, C. H. ;
Valeo, E. J. .
PHYSICS OF PLASMAS, 2013, 20 (03)
[3]   COMPUTER-SIMULATION OF NON-LINEAR ION-ELECTRON INSTABILITY [J].
BERMAN, RH ;
TETREAULT, DJ ;
DUPREE, TH ;
BOUTROSGHALI, T .
PHYSICAL REVIEW LETTERS, 1982, 48 (18) :1249-1252
[4]   Tutorial: Physics and modeling of Hall thrusters [J].
Boeuf, Jean-Pierre .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (01)
[5]   Far field modeling of the plasma plume of a Hall thruster [J].
Boyd, ID ;
Dressler, RA .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (04) :1764-1774
[6]   Kinetic simulations and reduced modeling of longitudinal sideband instabilities in non-linear electron plasma waves [J].
Brunner, S. ;
Berger, R. L. ;
Cohen, B. I. ;
Hausammann, L. ;
Valeo, E. J. .
PHYSICS OF PLASMAS, 2014, 21 (10)
[7]   Vlasov code simulation of anomalous resistivity [J].
Buchner, Jorg ;
Elkina, Nina .
SPACE SCIENCE REVIEWS, 2005, 121 (1-4) :237-252
[8]   DISSIPATION OF CURRENTS IN IONIZED MEDIA [J].
BUNEMAN, O .
PHYSICAL REVIEW, 1959, 115 (03) :503-517
[9]   INSTABILITY, TURBULENCE, AND CONDUCTIVITY IN CURRENT-CARRYING PLASMA [J].
BUNEMAN, O .
PHYSICAL REVIEW LETTERS, 1958, 1 (01) :8-9
[10]   ION-ACOUSTIC TURBULENCE AND ANOMALOUS TRANSPORT [J].
BYCHENKOV, VY ;
SILIN, VP ;
URYUPIN, SA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 164 (03) :119-215