Homotopy and homology of fibred spaces

被引:1
作者
Baues, HJ
Ferrario, DL
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
homology of fibred spaces; homotopy of fibred spaces;
D O I
10.1016/j.topol.2003.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study fibred spaces with fibres in a structure category xi and we show that cellular approximation, Blakers-Massey theorem, Whitehead theorems, obstruction theory, Hurewicz homomorphism, Wall finiteness obstruction, and Whitehead torsion theorem hold for fibred spaces. For this we introduce the cohomology of fibred spaces. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:63 / 96
页数:34
相关论文
共 37 条
[1]  
ANDERSON DR, 1982, MICH MATH J, V29, P27
[2]  
Baues H. J., 1989, Algebraic Homotopy
[3]  
BAUES HJ, 2002, STRATIFIED FIBRE BUN
[4]  
BAUES HJ, 2002, K THEORY STRATIFIED
[5]  
BAUES HJ, 1999, COMBINATORIAL FDN HO
[6]  
BREDON GE, 1967, EQUIVARIANT COHOMOLO
[7]   SINGULAR DEFINITION OF EQUIVARIANT BREDON HOMOLOGY [J].
BROCKER, T .
MANUSCRIPTA MATHEMATICA, 1971, 5 (01) :91-&
[8]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[9]  
BROWN R, 1967, P LOND MATH SOC, V17, P385
[10]  
Crabb M., 1998, Fibrewise Homotopy Theory