On the quadratic Lagrange spectrum

被引:8
作者
Bugeaud, Yann [1 ]
机构
[1] Univ Strasbourg, F-67084 Strasbourg, France
关键词
Lagrange spectrum; Continued fractions; Transcendence; DIOPHANTINE APPROXIMATION; CONTINUED FRACTIONS;
D O I
10.1007/s00209-013-1230-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the quadratic Lagrange spectrum defined by Parkkonen and Paulin by considering the approximation by elements of the orbit of a given real quadratic irrational number for the action by homographies and anti-homographies of on . Our approach is based on the theory of continued fractions.
引用
收藏
页码:985 / 999
页数:15
相关论文
共 14 条
[1]   On the Maillet-Baker continued fractions [J].
Adamczewski, Boris ;
Bugeaud, Yann .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 606 :105-121
[2]   On the Littlewood conjecture in simultaneous diophantine approximation [J].
Adamczewski, Boris ;
Bugeaud, Yann .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 :355-366
[3]   Transcendence measures for continued fractions involving repetitive or symmetric patterns [J].
Adamczewski, Boris ;
Bugeaud, Yann .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (04) :883-914
[4]   Exponents of Diophantine approximation and expansions in integer bases [J].
Amou, Masaaki ;
Bugeaud, Yann .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 :297-316
[5]  
[Anonymous], 1980, LECT NOTES MATH
[6]  
Bugeaud Y, ANN SCI ECO IN PRESS
[7]  
Bugeaud Y., 2004, CAMBRIDGE TRACTS MAT, V160
[8]   Continued fractions with low complexity: transcendence measures and quadratic approximation [J].
Bugeaud, Yann .
COMPOSITIO MATHEMATICA, 2012, 148 (03) :718-750
[9]  
Hardy GodfreyHarold., 1979, INTRO THEORY NUMBERS, V5
[10]  
Parkkonen J., MATH Z IN PRESS