A new algorithm for solving classical Blasius equation

被引:117
作者
Wang, L [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310028, Peoples R China
基金
中国国家自然科学基金;
关键词
Blasius equation; Adomian decompositon method;
D O I
10.1016/j.amc.2003.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a reliable algorithm is employed to investigate the classical Blasius equation. The algorithm is based mainly on applying the Adomian decomposition method to the transformation of the Blasius equation. The results demonstrate reliability and efficiency of the proposed algorithm. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 15 条
[1]  
ABUSITTA AMM, 1994, APPL MATH COMPUT, V4, P73
[3]  
Adomian G., 1994, SOLVING FRONTIER PRO
[4]   A finite-difference method for the Falkner-Skan equation [J].
Asaithambi, A .
APPLIED MATHEMATICS AND COMPUTATION, 1998, 92 (2-3) :135-141
[5]  
GUO KL, 1988, NUMERICAL HEAT TRANS
[6]  
KEULEGEN GK, 1994, J RES NBS, V32, P303
[8]  
POTTER OE, 1957, Q J MECH APPL MATH, V10, P302
[9]   A singular nonlinear differential equation arising in the Homann flow [J].
Shin, JY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (02) :443-451
[10]   The modified decomposition method and Pade approximants for solving the Thomas-Fermi equation [J].
Wazwaz, AM .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 105 (01) :11-19