High order Fuchsian equations for the square lattice Ising model: (χ)over-tilde(5)

被引:27
作者
Bostan, A. [1 ]
Boukraa, S. [2 ]
Guttmann, A. J. [3 ]
Hassani, S. [4 ]
Jensen, I. [3 ]
Maillard, J-M [5 ]
Zenine, N. [4 ]
机构
[1] INRIA Paris Rocquencourt, F-78153 Le Chesnay, France
[2] Univ Blida, LPTHIRM, Dept Aeronaut, Blida, Algeria
[3] Univ Melbourne, Dept Math & Stat, ARC Ctr Excellence Math & Stat Complex Syst, Melbourne, Vic 3010, Australia
[4] Ctr Rech Nucl Alger, Algiers 16000, Algeria
[5] Univ Paris, CNRS, UMR 7600, LPTMC, F-75252 Paris 05, France
关键词
DIFFERENTIAL-EQUATION; SUSCEPTIBILITY; SINGULARITIES; NUMBER; FACTORIZATION; INTEGRALS; OPERATORS; CHI((3));
D O I
10.1088/1751-8113/42/27/275209
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Fuchsian linear differential equation obtained (modulo a prime) for (chi) over tilde ((5)), the five-particle contribution to the susceptibility of the square lattice Ising model. We show that one can understand the factorization of the corresponding linear differential operator from calculations using just a single prime. A particular linear combination of (chi) over bar ((1)) and (chi) over tilde ((3)) can be removed from (chi) over tilde ((5)) and the resulting series is annihilated by a high order globally nilpotent linear ODE. The corresponding (minimal order) linear differential operator, of order 29, splits into factors of small orders. A fifth-order linear differential operator occurs as the left-most factor of the 'depleted' differential operator and it is shown to be equivalent to the symmetric fourth power of L-E, the linear differential operator corresponding to the elliptic integral E. This result generalizes what we have found for the lower order terms (chi) over tilde ((3)) and (chi) over tilde ((4)). We conjecture that a linear differential operator equivalent to a symmetric (n-1)th power of L-E occurs as a left-most factor in the minimal order linear differential operators for all. (chi) over tilde ((n))'s.
引用
收藏
页数:32
相关论文
共 31 条
[1]  
[Anonymous], GRUNDLEHREN MATH WIS
[2]   Globally nilpotent differential operators and the square Ising model [J].
Bostan, A. ;
Boukraa, S. ;
Hassani, S. ;
Maillard, J-M ;
Weil, J-A ;
Zenine, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (12)
[3]  
Bostan A, 2007, ISSAC 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, P25
[4]   Singularities of n-fold integrals of the Ising class and the theory of elliptic curves [J].
Boukraa, S. ;
Hassani, S. ;
Maillard, J-M ;
Zenine, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (39) :11713-11748
[5]   The diagonal Ising susceptibility [J].
Boukraa, S. ;
Hassani, S. ;
Maillard, J.-M. ;
McCoy, B. M. ;
Zenine, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) :8219-8236
[6]   Landau singularities and singularities of holonomic integrals of the Ising class [J].
Boukraa, S. ;
Hassani, S. ;
Maillard, J-M ;
Zenine, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (11) :2583-2614
[7]   Holonomy of the Ising model form factors [J].
Boukraa, S. ;
Hassani, S. ;
Maillard, J-M ;
McCoy, B. M. ;
Orrick, W. P. ;
Zenine, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (01) :75-111
[8]   Experimental mathematics on the magnetic susceptibility of the square lattice Ising model [J].
Boukraa, S. ;
Guttmann, A. J. ;
Hassani, S. ;
Jensen, I. ;
Maillard, J-M ;
Nickel, B. ;
Zenine, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (45)
[9]  
Cluzeau Thomas., 2003, Proceedings of ISSAC'03, P58
[10]   Efficient rational number reconstruction [J].
Collins, GE ;
Encarnacion, MJ .
JOURNAL OF SYMBOLIC COMPUTATION, 1995, 20 (03) :287-297