Surprising Temperature Scaling of Viscoelastic Properties in Polymers

被引:14
作者
Agapov, Alexander L. [1 ]
Novikov, Vladimir N. [1 ,2 ]
Hong, Tao [1 ]
Fan, Fei [1 ]
Sokolov, Alexei P. [1 ,3 ]
机构
[1] Univ Tennessee, Dept Chem, 1420 Circle Dr, Knoxville, TN 37996 USA
[2] Russian Acad Sci, Inst Automat & Electrometry, 1 Koptyug Ave, Novosibirsk 630090, Russia
[3] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
关键词
MOLECULAR-WEIGHT POLYSTYRENE; GLASS-FORMING LIQUIDS; AMORPHOUS POLYMERS; TRANSITION TEMPERATURE; SEGMENTAL RELAXATION; EMERGENT ELASTICITY; DYNAMIC FRAGILITY; CHAIN DYNAMICS; DEPENDENCE; BEHAVIOR;
D O I
10.1021/acs.macromol.8b00454
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We present detailed studies of segmental dynamics and viscosity in polystyrene (PS) and poly(2-vinylpyridine) (P2VP) with different molecular weights (MW). Analysis reveals that the molecular weight dependence exhibits very different temperature scaling for segmental and chain dynamics: while segmental relaxation in samples with different MW forms a master curve when presented vs T - Tg, the viscosity of the same samples falls on a master curve when presented vs Tg/T (here Tg is the glass transition temperature). This result indicates significant difference in the friction mechanisms for chain and segmental dynamics. Even more puzzling is that the absolute values of viscosity appear to be essentially MW independent when presented vs Tg/T up to surprisingly high molecular weight. In particular, viscosity at T-g does not show any appreciable molecular weight dependence up to MW approximate to 30 000 g/mol. We speculate that molecular scale relaxation (chain dynamics) in polymers behaves similar to the structural relaxation in small molecular liquids, while additional slowing down mechanism contributes to the segmental relaxation in the same polymers.
引用
收藏
页码:4874 / 4881
页数:8
相关论文
共 52 条
[1]   Molecular Weight Dependence of Fragility in Polymers [J].
Abou Elfadl, A. ;
Herrmann, A. ;
Hintermeyer, J. ;
Petzold, N. ;
Novikov, V. N. ;
Roessler, E. A. .
MACROMOLECULES, 2009, 42 (17) :6816-6817
[3]   Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials [J].
Betancourt, Beatriz A. Pazmino ;
Hanakata, Paul Z. ;
Starr, Francis W. ;
Douglas, Jack F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (10) :2966-2971
[4]  
Bottcher C. J. F., 1996, Theory of Electric Polarization, V2
[5]   Are polymers standard glass-forming systems? The role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers [J].
Colmenero, J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (10)
[6]   Why many polymers are so fragile: A new perspective [J].
Dalle-Ferrier, C. ;
Kisliuk, A. ;
Hong, L. ;
Carini, G., Jr. ;
Carini, G. ;
D'Angelo, G. ;
Alba-Simionesco, C. ;
Novikov, V. N. ;
Sokolov, A. P. .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (15)
[7]   Breakdown of time-temperature superposition principle and universality of chain dynamics in polymers [J].
Ding, YF ;
Sokolov, AP .
MACROMOLECULES, 2006, 39 (09) :3322-3326
[8]   When does a molecule become a polymer? [J].
Ding, YF ;
Kisliuk, A ;
Sokolov, AP .
MACROMOLECULES, 2004, 37 (01) :161-166
[9]  
Doi M., 1986, The Theory of Polymer Dynamics
[10]  
Dudowicz J, 2008, ADV CHEM PHYS, V137, P125