Shifted simplicial complexes are Laplacian integral

被引:48
作者
Duval, AM [1 ]
Reiner, V
机构
[1] Univ Texas, Dept Math Sci, El Paso, TX 79968 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
Laplace operator; Laplacian; simplicial complex; spectra;
D O I
10.1090/S0002-9947-02-03082-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the combinatorial Laplace operators associated to the boundary maps in a shifted simplicial complex have all integer spectra. We give a simple combinatorial interpretation for the spectra in terms of vertex degree sequences, generalizing a theorem of Merris for graphs. We also conjecture a majorization inequality for the spectra of these Laplace operators in an arbitrary simplicial complex, with equality achieved if and only if the complex is shifted. This generalizes a conjecture of Grone and Merris for graphs.
引用
收藏
页码:4313 / 4344
页数:32
相关论文
共 32 条
[1]   COUNTING COLORFUL MULTIDIMENSIONAL TREES [J].
ADIN, RM .
COMBINATORICA, 1992, 12 (03) :247-260
[2]  
Anderson W. N., 1985, Linear Multilinear Algebra, V18, P141, DOI [10.1080/03081088508817681, DOI 10.1080/03081088508817681]
[3]  
ANDERSON WN, 1971, TR7145 U MAR
[4]  
[Anonymous], DISCRETE MATH THEORE
[5]  
[Anonymous], LIN MULTILIN ALG
[6]   Shellable nonpure complexes and posets .2. [J].
Bjorner, A ;
Wachs, ML .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :3945-3975
[7]   Shellable nonpure complexes and posets .1. [J].
Bjorner, A ;
Wachs, ML .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (04) :1299-1327
[8]   AN EXTENDED EULER-POINCARE THEOREM [J].
BJORNER, A ;
KALAI, G .
ACTA MATHEMATICA, 1988, 161 (3-4) :279-303
[9]  
Chung F. R. K., 1997, SPECTRAL GRAPH THEOR
[10]  
Chvatal V., 1977, Ann. Discrete Math., V1, P145