Long cycle life and high rate sodium-ion chemistry for hard carbon anodes

被引:151
作者
Bai, Panxing [1 ,2 ]
He, Yongwu [1 ,2 ]
Xiong, Peixun [1 ,2 ]
Zhao, Xinxin [1 ,2 ]
Xu, Kang [3 ]
Xu, Yunhua [1 ,2 ,4 ,5 ]
机构
[1] Tianjin Univ, Tianjin Key Lab Composite & Funct Mat, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
[3] US Army, Electrochem Branch, Power & Energy Div, Sensor & Electron Devices Directorate,Res Lab, Adelphi, MD 20783 USA
[4] Minist Educ, Key Lab Adv Ceram & Machining Technol, Tianjin 300072, Peoples R China
[5] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hard carbon anode; Na-ion battery; Electrolyte; Solid-electrolyte-interphase; Kinetics; SOLID-ELECTROLYTE INTERPHASE; ETHER-BASED ELECTROLYTE; RATE CAPABILITY; ENERGY-STORAGE; DENSITY SODIUM; HIGH-CAPACITY; PERFORMANCE; BATTERY; GRAPHITE; STABILITY;
D O I
10.1016/j.ensm.2018.02.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the most promising anode material for Na-ion batteries, hard carbons suffer both poor rate capability and cycling stability, which restrict its practical application. These challenges come not only from the carbonaceous electrode structure, but also from how to tailor-design an electrolyte that can support high sodium ion transport while simultaneously providing a protective solid-electrolyte-interphase (SEI). Here we develop a new strategy to decouple the "bulk ion transport" and "interphasial" requirements for electrolytes. By pre-engineering a "foreign SEI" from an ester-based electrolyte, we successfully stabilized the hard carbon anodes in ether-based electrolyte and realized significant improvement in electrochemical performance. At a high rate of 500 mA g(-1), a capacity of 200 mA h g(-1) was retained for over 1000 cycles without detectable capacity fading. Such an outstanding performance is attributed to the "foreign SEI" approach, which makes it possible for a synergistic cooperation between the rapid diffusion of sodium ions in ether-based electrolytes and a protective ester-originated interphase.
引用
收藏
页码:274 / 282
页数:9
相关论文
共 79 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Mille-feuille shaped hard carbons derived from polyvinylpyrrolidone via environmentally friendly electrostatic spinning for sodium ion battery anodes [J].
Bai, Ying ;
Liu, Yuanchang ;
Li, Yu ;
Ling, Liming ;
Wu, Feng ;
Wu, Chuan .
RSC ADVANCES, 2017, 7 (09) :5519-5527
[3]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[4]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[5]   Carbon-Coated Na3.32Fe2.34( P2O7)2 Cathode Material for High-Rate and Long-Life Sodium-Ion Batteries [J].
Chen, Mingzhe ;
Chen, Lingna ;
Hu, Zhe ;
Liu, Qiannan ;
Zhang, Binwei ;
Hu, Yuxiang ;
Gu, Qinfen ;
Wang, Jian-Li ;
Wang, Lian-Zhou ;
Guo, Xiaodong ;
Chou, Shu-Lei ;
Dou, Shi-Xue .
ADVANCED MATERIALS, 2017, 29 (21)
[6]   Synthesis of hard carbon from argan shells for Na-ion batteries [J].
Dahbi, Mouad ;
Kiso, Manami ;
Kubota, Kei ;
Horiba, Tatsuo ;
Chafik, Tarik ;
Hida, Kazuo ;
Matsuyama, Takashi ;
Komaba, Shinichi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (20) :9917-9928
[7]   Effect of Hexafluorophosphate and Fluoroethylene Carbonate on Electrochemical Performance and the Surface Layer of Hard Carbon for Sodium-Ion Batteries [J].
Dahbi, Mouad ;
Nakano, Takeshi ;
Yabuuchi, Naoaki ;
Fujimura, Shun ;
Chihara, Kuniko ;
Kubota, Kei ;
Son, Jin-Young ;
Cui, Yi-Tao ;
Oji, Hiroshi ;
Komaba, Shinichi .
CHEMELECTROCHEM, 2016, 3 (11) :1856-1867
[8]   Study of the Most Relevant Aspects Related to Hard Carbons as Anode Materials for Na-ion Batteries, Compared with Li-ion Systems [J].
de la Llave, Ezequiel ;
Borgel, Valentina ;
Zinigrad, Ella ;
Chesneau, Frederick-Francois ;
Hartmann, Pascal ;
Sun, Yang-Kook ;
Aurbach, Doron .
ISRAEL JOURNAL OF CHEMISTRY, 2015, 55 (11-12) :1260-1274
[9]   Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes [J].
Ding, Jia ;
Wang, Huanlei ;
Li, Zhi ;
Kohandehghan, Alireza ;
Cui, Kai ;
Xu, Zhanwei ;
Zahiri, Beniamin ;
Tan, Xuehai ;
Lotfabad, Elmira Memarzadeh ;
Olsen, Brian C. ;
Mitlin, David .
ACS NANO, 2013, 7 (12) :11004-11015
[10]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935