Eigenvalues of a Linear Fourth-Order Differential Operator with Squared Spectral Parameter in a Boundary Condition

被引:16
作者
Gao, Chenghua [1 ]
Li, Xiaolong [1 ]
Ma, Ruyun [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Gansu, Peoples R China
关键词
Linear fourth-order differential operator; squared spectral parameter; spectrum; oscillation properties; interlacing; STURM-LIOUVILLE PROBLEMS; BASIS PROPERTY; EIGENFUNCTIONS; SYSTEMS;
D O I
10.1007/s00009-018-1148-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the spectrum of the following linear fourth-order eigenvalue problem: (py '')''(x) - (q(x)y'(x))' = lambda y(x), x is an element of (0, l), y'(0) cos alpha-y ''(0) sin alpha = 0, y(0) cos beta + Ty(0) sin beta = 0, y'(l) cos gamma + y ''(l) sin gamma = 0, (c(0) + c(1)lambda + c(2)lambda(2))y(l) = (d(0) + d(1)lambda + d(2)lambda(2))Ty(l), where lambda is a spectral parameter, Ty = (py '')'-qy', p(x) has absolutely continuous derivative, q(x) is absolutely continuous on [0, l]; alpha, beta, gamma, c(i) and d(i) (i = 0, 1, 2) are real constants; 0 <= alpha, beta, gamma <= pi/2. By giving a new condition to guarantee the self-definiteness of the corresponding operator L, we obtain the simplicity and interlacing properties of the eigenvalues and the oscillation properties of the corresponding eigenfunctions. Meanwhile, some exceptional cases are also discussed when the self-definiteness condition does not hold. These results extend some existing results of the linear fourth-order eigenvalue problems with linear parameter in the boundary conditions and some existing results of the classical eigenvalue problems.
引用
收藏
页数:14
相关论文
共 22 条
[2]   Basis Properties in Lp of Systems of Root Functions of a Spectral Problem with Spectral Parameter in a Boundary Condition [J].
Aliev, Z. S. .
DIFFERENTIAL EQUATIONS, 2011, 47 (06) :766-777
[3]   Boundary value problems with eigenvalue depending boundary conditions [J].
Behrndt, Jussi .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (05) :659-689
[4]  
Belinskiy BD, 1996, APPL ANAL, V61, P255
[5]   On a fourth-order problem with spectral and physical parameters in the boundary condition [J].
Ben Amara, J ;
Vladimirov, AA .
IZVESTIYA MATHEMATICS, 2004, 68 (04) :645-658
[6]   Spectral and oscillatory properties of a linear pencil of fourth-order differential operators [J].
Ben Amara, J. ;
Shkalikov, A. A. ;
Vladimirov, A. A. .
MATHEMATICAL NOTES, 2013, 94 (1-2) :49-59
[7]   Two-parameter right definite Sturm-Liouville problems with eigenparameter-dependent boundary conditions [J].
Bhattacharyya, T ;
Binding, PA ;
Seddighi, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :45-58
[8]   STURM-LIOUVILLE PROBLEMS WITH EIGENPARAMETER DEPENDENT BOUNDARY-CONDITIONS [J].
BINDING, PA ;
BROWNE, PJ ;
SEDDIGHI, K .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1994, 37 :57-72
[9]   A Prufer approach to half-linear Sturm Liouville problems [J].
Browne, PJ .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1998, 41 :573-583
[10]   The linearization of boundary eigenvalue problems and reproducing kernel Hilbert spaces [J].
Curgus, B ;
Dijksma, A ;
Read, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 329 (1-3) :97-136