Effects of Rare Earth Oxides on Viscosity, Thermal Expansion, and Structure of Alkali-Free Boro-Aluminosilicate Glass

被引:24
作者
Yansheng, Hou [1 ]
Jian, Yuan [1 ]
Junfeng, Kang [1 ]
Jingjing, Cui [1 ]
Jinshu, Cheng [1 ,2 ]
Jing, Cui [3 ]
机构
[1] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[2] Hebei Glass Technol Res Inst, Shahe 054100, Peoples R China
[3] Shanxi Ind Vocat Coll, Xianyang 712000, Peoples R China
来源
JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION | 2017年 / 32卷 / 01期
关键词
viscosity; structure; boro-aluminosilicate; rare earth oxides; SODIUM BOROSILICATE GLASSES; HIGH-RESOLUTION B-11; LIME-SILICATE GLASS; CRYSTALLIZATION; FTIR; NMR; SPECTROSCOPY; AL-27; GD2O3;
D O I
10.1007/s11595-017-1558-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Effects of rare earth oxides ( Y2O3, La2O3, and Er2O3) on the viscosity, thermal expansion, and structure of alkali-free boro-aluminosilicate glasses were investigated by the rotating crucible viscometer, dilatometry and FT-IR absorption spectra. The results showed that the melting temperature of alkali-free boro-aluminosilicate glasses decreased from 1 697.55 to 1 662.59, 1 674.37 and 1 640.87 degrees C with the introduction of 1 mol% La2O3, Y2O3 and Er2O3, respectively. However, the glass transition temperature T-g, dilatometric softening temperature T-d and coefficient of thermal expansion of alkali-free boro-aluminosilicate glasses increased when adding the rare-earth oxides. At high temperatures, incorporating rare earth oxides into glass resulted in the peak at about 1 085 cm(-1) towards lower wavenumber and the absorption band in the region of 850-1 260 cm(-1) broader, which indicated that rare earths acted as network modifiers and increased the numbers of non-bridging oxygen in the glass melts. However, the rare earths had an opposite effect and accumulated the glass structure at low temperatures near T-g.
引用
收藏
页码:58 / 62
页数:5
相关论文
共 29 条
  • [1] FTIR and DTA study of lanthanum aluminosilicate glasses
    Aronne, A
    Esposito, S
    Pernice, P
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 1997, 51 (02) : 163 - 168
  • [2] Crystallization Kinetics of Superionic Conductive Al(B, La)- Incorporated LiTi2(PO4)3 Glass-Ceramics
    Chen, Hongping
    Tao, Haizheng
    Wu, Qide
    Zhao, Xiujian
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (03) : 801 - 805
  • [3] [程金树 Cheng Jinshu], 2012, [材料科学与工程学报, Journal of Materials Science and Engineering], V30, P98
  • [4] Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses
    Clayden, NJ
    Esposito, S
    Aronne, A
    Pernice, P
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1999, 258 (1-3) : 11 - 19
  • [5] Condrate S R A, 1994, KEY ENG MATER, V94-95, P209
  • [6] Network connectivity in aluminoborosilicate glasses:: A high-resolution 11B, 27Al and 17O NMR study
    Du, LS
    Stebbins, JF
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2005, 351 (43-45) : 3508 - 3520
  • [7] Du LS, 2003, J PHYS CHEM B, V107, P10063, DOI 10.1021/jp0340481
  • [8] Mechanical and structural studies on sodium borosilicate glasses doped with Er2O3 using ultrasonic velocity and FTIR spectroscopy
    Gaafar, M. S.
    Marzouk, S. Y.
    [J]. PHYSICA B-CONDENSED MATTER, 2007, 388 (1-2) : 294 - 302
  • [9] Origin of the frequency shift of Raman scattering in chalcogenide glasses
    Han, Xuecai
    Tao, Haizheng
    Gong, Lunjun
    Wang, Xueye
    Zhao, Xiujian
    Yue, Yuanzheng
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2014, 391 : 117 - 119
  • [10] Arrhenius model for high-temperature glass-viscosity with a constant pre-exponential factor
    Hrma, Pavel
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (18) : 1962 - 1968