Isentropic compressible magnetohydrodynamic equations;
incompressible magnetohydrodynamic equations;
local well-posedness;
low Mach number limit;
critical spaces;
CLASSICAL-SOLUTIONS;
GLOBAL EXISTENCE;
CONVERGENCE;
D O I:
10.3934/krm.2017030
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The local well-posedness and low Mach number limit are considered for the multi-dimensional isentropic compressible viscous magnetohydrodynamic equations in critical spaces. First the local well-posedness of solution to the viscous magnetohydrodynamic equations with large initial data is established. Then the low Mach number limit is studied for general large data and it is proved that the solution of the compressible magnetohydrodynamic equations converges to that of the incompressible magnetohydrodynamic equations as the Mach number tends to zero. Moreover, the convergence rates are obtained.
机构:
Henan Polytech Univ, Sch Math & Informat, Jiaozuo 454000, Henan, Peoples R China
China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R ChinaHenan Polytech Univ, Sch Math & Informat, Jiaozuo 454000, Henan, Peoples R China
Bian, Dongfen
Yuan, Baoquan
论文数: 0引用数: 0
h-index: 0
机构:
Henan Polytech Univ, Sch Math & Informat, Jiaozuo 454000, Henan, Peoples R ChinaHenan Polytech Univ, Sch Math & Informat, Jiaozuo 454000, Henan, Peoples R China
机构:
Ctr Saclay DEN DANS DM2S SFME LETR, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, FranceCtr Saclay DEN DANS DM2S SFME LETR, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, France