Scattering and asymptotic order for the wave equations with the scale-invariant damping and mass

被引:2
作者
Inui, Takahisa [1 ]
Mizutani, Haruya [1 ]
机构
[1] Osaka Univ, Dept Math, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2021年 / 28卷 / 01期
关键词
Wave equation; Scale-invariant damping; Scattering; Energy critical nonlinearity; Strichartz estimates; TIME-DEPENDENT DISSIPATION; LIFE-SPAN; EXPONENT;
D O I
10.1007/s00030-020-00671-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the linear wave equation with the time-dependent scale-invariant damping and mass. We also treat the corresponding equation with the energy critical nonlinearity. Our aim is to show that the solution scatters to a modified linear wave solution and to obtain its asymptotic order.
引用
收藏
页数:33
相关论文
共 44 条
  • [21] Improvement on the blow-up of the wave equation with the scale-invariant clamping and combined nonlinearities
    Hamouda, Makram
    Hamza, Mohamed Ali
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
  • [22] A New Method for Blow-Up to Scale-Invariant Damped Wave Equations with Derivatives and Combined Nonlinear Terms
    Chen, Yuanming
    SYMMETRY-BASEL, 2022, 14 (02):
  • [23] A global existence result for a semilinear scale-invariant wave equation in even dimension
    Palmieri, Alessandro
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (08) : 2680 - 2706
  • [24] A wave and beam equations with structural damping of negative order
    Khaldi, Said
    FILOMAT, 2024, 38 (14) : 4853 - 4862
  • [25] Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms
    Ikehata, Ryo
    Sawada, Atsushi
    ASYMPTOTIC ANALYSIS, 2016, 98 (1-2) : 59 - 77
  • [26] Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation
    do Nascimento, Wanderley Nunes
    Palmieri, Alessandro
    Reissig, Michael
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (11-12) : 1779 - 1805
  • [27] Blow-up of solution to semilinear wave equations with strong damping and scattering damping
    Ming, Sen
    Du, Jiayi
    Su, Yeqin
    Xue, Hui
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [28] Critical exponent for the wave equation with a time-dependent scale invariant damping and a cubic convolution
    Ikeda, Masahiro
    Tanaka, Tomoyuki
    Wakasa, Kyouhei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 270 : 916 - 946
  • [29] Asymptotic profile and optimal decay of solutions of some wave equations with logarithmic damping
    Ruy Coimbra Charão
    Ryo Ikehata
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [30] Asymptotic profile and optimal decay of solutions of some wave equations with logarithmic damping
    Charao, Ruy Coimbra
    Ikehata, Ryo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):